The ability of peptide nucleic acids (PNA) to enter and to cross filter-grown MDCK, HEK and CHO cells was studied by means of a protocol based on capillary electrophoresis combined with laser-induced fluorescence detection. The used approach avoided possible errors encountered in protocols based on confocal laserscanning microscopy and FACS analysis. In contradiction to the commonly anticipated unability of PNA to cross biomembranes, extensive translocation of unmodified PNA into and across the investigated cell types was found. The transport mode comprised a variety of energy dependent and -independent as well as temperature sensitive mechanisms being probably destined to natural substrates and hijacked by PNA. The presented results suggest active as well as passive export mechanisms rather than poor penetration into cells to be responsible for the only weak biological activity of unmodified PNA.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156720111796642291DOI Listing

Publication Analysis

Top Keywords

peptide nucleic
8
nucleic acids
8
unmodified pna
8
pna
5
evidence extensive
4
extensive non-endocytotic
4
non-endocytotic translocation
4
translocation peptide
4
acids mammalian
4
mammalian plasma
4

Similar Publications

As a diverse and complex food matrix, the animal food microbiota and repertoire of antimicrobial resistance (AMR) genes remain to be better understood. In this study, 16S rRNA gene amplicon sequencing and shotgun metagenomics were applied to three types of animal food samples (cattle feed, dry dog food, and poultry feed). ZymoBIOMICS mock microbial community was used for workflow optimization including DNA extraction kits and bead-beating conditions.

View Article and Find Full Text PDF

A bird's-eye view of the biological mechanism and machine learning prediction approaches for cell-penetrating peptides.

Front Artif Intell

January 2025

Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India.

Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health.

View Article and Find Full Text PDF

Rifampicin-resistant tuberculosis (RR-TB) is a critical issue with significant implications for patient care, public health, and TB control efforts that necessitate comprehensive strategies for detection. This study presents a novel point-of-care diagnostic tool for RR-TB detection employing a peptide nucleic acid (PNA)-paper-based sensor combined with isothermal recombinase polymerase amplification (RPA). The sensor targets mutations in codons 516, 526, and 531 of the rpoB gene, the top three common mutations associated with rifampicin-resistant strains.

View Article and Find Full Text PDF

CD133PD-L1 cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma.

Nat Commun

January 2025

School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.

Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!