Virtual screening of small molecule databases against macromolecular targets was used to identify binding ligands and predict their lowest energy bound conformation (i.e., pose). AutoDock4-generated poses were rescored using mean-field pathway decoupling free energy of binding calculations and evaluated if these calculations improved virtual screening discrimination between bound and nonbound ligands. Two small molecule databases were used to evaluate the effectiveness of the rescoring algorithm in correctly identifying binders of L99A T4 lysozyme. Self-dock calculations of a database containing compounds with known binding free energies and cocrystal structures largely reproduced experimental measurements, although the mean difference between calculated and experimental binding free energies increased as the predicted bound poses diverged from the experimental poses. In addition, free energy rescoring was more accurate than AutoDock4 scores in discriminating between known binders and nonbinders, suggesting free energy rescoring could be a useful approach to reduce false positive predictions in virtual screening experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145410 | PMC |
http://dx.doi.org/10.1021/ci200126v | DOI Listing |
Mol Divers
January 2025
Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Influenza is a highly contagious respiratory illness that imposes a significant global burden. Antiviral neuraminidase inhibitors (NAIs) such as oseltamivir (OC) have been proven essential, but the emergence of resistant viral strains necessitates the development of novel therapies. This study explored the potential of natural products as alternative NAIs.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China.
Deoxyribonucleic acid (DNA) serves as a repository of genetic information in cells and is a critical molecular target for various antibiotics and anticancer drugs. A profound understanding of small molecule interaction with DNA is crucial for the rational design of DNA-targeted therapies. While the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) approaches have been well established for predicting protein-ligand binding, their application to DNA-ligand interactions has been less explored.
View Article and Find Full Text PDFAesthet Surg J
January 2025
Department of Dermatology, Erasmus Medical Centre, Rotterdam, the Netherlands and is an Evidence-Based Medicine editor for Aesthetic Surgery Journal.
Background: Effects of upper facial aging can present as static forehead and periorbital rhytids as well as soft tissue volume loss. The latter can prompt in conjunct with bony changes of the calvaria eyebrow and eyelid ptosis. Injection-based treatments can yield positive outcomes but are not free of procedural risks.
View Article and Find Full Text PDFChemphyschem
January 2025
Hefei Institutes of Physical Science Chinese Academy of Sciences: Chinese Academy of Sciences Hefei Institutes of Physical Science, Physics, , Hefei, 230031, Hefei, CHINA.
This study employs first-principles methods to investigate the ORR catalytic activity of As-doped and AsN co-doped graphene. As atoms, as catalytic active sites, exhibit excellent catalytic activity. Due to the strong interaction between As and N, the stability of the As-N co-doped substrate is enhanced.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China.
Background: The bean flower thrips, Megalurothrips usitatus, poses a great threat to cowpea and other legume cultivars. Chemical insecticides have been applied to control M. usitatus, but have resulted in little profit because of the rapid evolution of insecticide resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!