The pursuit of alternate therapies for end-stage heart failure post-myocardial infarction has led to the development of a variety of in situ gelling materials to be used as cellular or acellular scaffolds for cardiac repair. Previously, a protocol was established to decellularize human and porcine pericardia and process the extracellular matrix (ECM) into an injectable form. The resulting gels were found to retain components of the native extracellular matrix; cell infiltration was facilitated in vivo, and neovascularization was observed by 2 weeks. However, the assertion that an injectable form of human pericardial tissue could be a potentially autologous scaffold for myocardial tissue engineering requires assessment of the patient-to-patient variability. With this work, seven human pericardia from a relevant patient demographic are processed into injectable matrix materials that gel when brought to physiologic conditions. The resulting materials are compared with respect to their protein composition, glycosaminoglycan content, in vitro degradation, in vivo gelation, and microstructure. It is observed that a diminished collagen content in a subset of samples prevents in vitro gelation but not in vivo gelation at lower ECM concentrations. The structure is similarly fibrous and porous across all samples, implying the cell infiltration may be similarly facilitated. The biochemical composition as characterized by tandem mass spectrometry is comparable; basic ECM components are conserved across all samples, and the presence of a wide variety of ECM proteins and glycoproteins demonstrate the retention of biochemical complexity post-processing. It is concluded that the variability within human pericardial tissue specimens does not prevent them from being processed into injectable scaffolds; therefore, pericardial tissue offers a promising source as an autologous, injectable biomaterial scaffold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280922PMC
http://dx.doi.org/10.1007/s12265-011-9293-zDOI Listing

Publication Analysis

Top Keywords

pericardial tissue
12
patient-to-patient variability
8
scaffolds cardiac
8
cardiac repair
8
extracellular matrix
8
injectable form
8
cell infiltration
8
infiltration facilitated
8
human pericardial
8
processed injectable
8

Similar Publications

This study aimed to investigate the correlation of the increased volume index of epicardial adipose tissue (EAT) and left ventricular hypertrophy (LVH) in patients with Hypertension (HTN). A total of 209 HTN patients and 50 healthy controls, who underwent cardiovascular magnetic resonance (CMR) at two medical centers in China between June 2015 and October 2024, were enrolled for this study. Postprocessing and imaging analysis were conducted and EAT measurements were performed.

View Article and Find Full Text PDF

Superior vena cava obstruction following pericardial effusion absorption in the presence of a pericardial teratoma: a case report.

J Cardiothorac Surg

January 2025

Department of Cardiac Surgery, Children's Hospital Affiliated Shandong University Jinan Children's Hospital, No. 23976, Jingshi Road, Huaiyin District, Jinan City, Shandong Province, China.

Intrapericardial teratoma is a rare tumor that usually presents in neonates or during infancy because of the associated high degree of pericardial effusion, cardiac compression and severe respiratory distress. In this paper, we report a rare case of intrapericardial teratoma that was incidentally discovered in an infant with superior vena cava obstruction following pericardial effusion absorption. Echocardiography and thoracic computed tomography angiography revealed that the intrapericardial mass obviously suppressed the superior vena cava.

View Article and Find Full Text PDF

Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg).

View Article and Find Full Text PDF

Aim: To assess the relationship between body mass index (BMI), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), epicardial adipose tissue (EAT), pericardial adipose tissue (PAT) and clinical outcomes in dilated cardiomyopathy (DCM) patients.

Methods: Non-ischemic DCM patients were prospectively enrolled. Regional adipose tissue, cardiac function, and myocardial tissue characteristics were measured by cardiac magnetic resonance (CMR).

View Article and Find Full Text PDF

Background: Chest computed tomography (CT) is a valuable tool for diagnosing and predicting the severity of coronavirus disease 2019 (COVID-19) and assessing extrapulmonary organs. Reduced muscle mass and visceral fat accumulation are important features of a body composition phenotype in which obesity and muscle loss coexist, but their relationship with COVID-19 outcomes remains unclear. In this study, we aimed to investigate the association between the erector spinae muscle (ESM) to epicardial adipose tissue (EAT) ratio (ESM/EAT) on chest CT and disease severity in patients with COVID-19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!