Intrinsic nanocrystalline diamond (NCD) films have been proven to be promising substrates for the adhesion, growth and osteogenic differentiation of bone-derived cells. To understand the role of various degrees of doping (semiconducting to metallic-like), the NCD films were deposited on silicon substrates by a microwave plasma-enhanced CVD process and their boron doping was achieved by adding trimethylboron to the CH(4):H(2) gas mixture, the B∶C ratio was 133, 1000 and 6700 ppm. The room temperature electrical resistivity of the films decreased from >10 MΩ (undoped films) to 55 kΩ, 0.6 kΩ, and 0.3 kΩ (doped films with 133, 1000 and 6700 ppm of B, respectively). The increase in the number of human osteoblast-like MG 63 cells in 7-day-old cultures on NCD films was most apparent on the NCD films doped with 133 and 1000 ppm of B (153,000 ± 14,000 and 152,000 ± 10,000 cells/cm(2), respectively, compared to 113,000 ± 10,000 cells/cm(2) on undoped NCD films). As measured by ELISA per mg of total protein, the cells on NCD with 133 and 1000 ppm of B also contained the highest concentrations of collagen I and alkaline phosphatase, respectively. On the NCD films with 6700 ppm of B, the cells contained the highest concentration of focal adhesion protein vinculin, and the highest amount of collagen I was adsorbed. The concentration of osteocalcin also increased with increasing level of B doping. The cell viability on all tested NCD films was almost 100%. Measurements of the concentration of ICAM-1, i.e. an immunoglobuline adhesion molecule binding inflammatory cells, suggested that the cells on the NCD films did not undergo significant immune activation. Thus, the potential of NCD films for bone tissue regeneration can be further enhanced and tailored by B doping and that B doping up to metallic-like levels is not detrimental for cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112228 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020943 | PLOS |
Micromachines (Basel)
November 2024
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China.
Integrating nanocrystalline diamond (NCD) films on silicon chips has great practical significance and many potential applications, including high-power electronic devices, microelectromechanical systems, optoelectronic devices, and biosensors. In this study, we provide a solution for ensuring heterogeneous interface integration between silicon (Si) chips and NCD films using low-temperature bonding technology. This paper details the design and implementation of a magnetron sputtering layer on an NCD surface, as well as the materials and process for the connection layer of the integrated interface.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
Developing sustainable and multifunctional materials is imperative for advancing anti-counterfeiting measures, sensing technologies, and intelligent packaging solutions. Concurrently, materials based on carbon dots (CDs) and cellulose nanocrystals (CNCs) are becoming established in such applications. Therefore, herein, we present the fabrication and characterization of water-based CDs and CNCs from (black lentil: BL).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
imec, Kapeldreef 75, Leuven 3001, Belgium.
All-inorganic cesium lead halide perovskites possess excellent thermal stability, a feature that renders them highly favorable for optoelectronic applications with an elevated thermal budget. Employing a coevaporation approach for their deposition holds promise for manufacturing at an industrial level, owing to improvements in device scalability and reproducibility. For unlocking the full potential of vacuum-evaporated perovskite thin films, it is crucial to delve deeper into their crystallization process, which, as a solid-state reaction, has been less investigated compared to the crystallization process of, most commonly used, solution-based methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
LCP Group, Department of Electronics and Information Systems, Ghent University, Technologiepark - Zwijnaarde 126, 9052 Gent, Belgium.
In contrast to the widely studied electrical properties of Pb(Zr,Ti)O thin films, which have led to their applicability in various application areas such as thin film capacitors, microelectronics, and ferroelectric memories, the electro-optic (EO) properties are far less studied, which hinders the applicability of Pb(Zr,Ti)O films for EO applications such as heterogeneously integrated phase modulators in silicon (Si) photonics. Therefore, the EO properties of Pb(Zr,Ti)O films need to be further investigated to pave the way for the applicability of Pb(Zr,Ti)O films in EO applications. As the EO properties of ferroelectric thin films strongly depend on their crystal phase and texture, which in turn are influenced by the method of film fabrication.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
Department of Physics, I3N (Institute for Nanostructures, Nanomodelling and Nanofabrication), University of Aveiro, 3810-193 Aveiro, Portugal.
Nanocrystalline diamond (NCD) films are attractive for many applications due to their smooth surfaces while holding the properties of diamond. However, their growth rate is generally low using common Ar/CH with or without H chemistry and strongly dependent on the overall growth conditions using microwave plasma chemical vapor deposition (MPCVD). In this work, incorporating a small amount of N and O additives into CH/H chemistry offered a much higher growth rate of NCD films, which is promising for some applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!