Phase separation, crystallization and polyamorphism in the Y(2)O(3)-Al(2)O(3) system.

J Phys Condens Matter

H H Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, UK.

Published: May 2008

A detailed study of glass formation from aerodynamically levitated liquids in the (Y(2)O(3))(x)(Al(2)O(3))(1-x) system for the composition range 0.21≤x≤0.41 was undertaken by using pyrometric, optical imaging and x-ray diffraction methods. Homogeneous and clear single-phase glasses were produced over the composition range [Formula: see text]. For Y(2)O(3)-rich compositions ([Formula: see text]), cloudy materials were produced which contain inclusions of crystalline yttrium aluminium garnet (YAG) of diameter up to 40 µm in a glassy matrix. For Y(2)O(3)-poor compositions around x = 0.24, cloudy materials were also produced, but it was not possible to deduce whether this resulted from (i) sub-micron inclusions of a nano-crystalline or glassy material in a glassy matrix or (ii) a glass formed by spinodal decomposition. For x = 0.21, however, the sample cloudiness results from crystallization into at least two phases comprising yttrium aluminium perovskite and alumina. The associated pyrometric cooling curve shows slow recalescence events with a continuous and slow evolution of excess heat which contrasts with the sharp recalescence events observed for the crystallization of YAG at compositions near x = 0.375. The materials that are the most likely candidates for demonstrating homogeneous nucleation of a second liquid phase occur around x = 0.25, which corresponds to the limit for formation of a continuous random network of corner-shared AlO(4) tetrahedra.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/20/20/205103DOI Listing

Publication Analysis

Top Keywords

composition range
8
[formula text]
8
cloudy materials
8
materials produced
8
yttrium aluminium
8
glassy matrix
8
recalescence events
8
phase separation
4
separation crystallization
4
crystallization polyamorphism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!