The complex charge ordering phenomena for polycrystalline La(1-x)Sr(x)FeO(3) (1/3≤x≤2/3) have been studied by measuring the low temperature magnetization, resistivity and the longitudinal ultrasonic velocity (V(l)). At low doping levels (1/3≤x≤0.5), a dramatic velocity increase is observed below 210 K, and the relative stiffening of V(l) is proportional to the Sr concentration. The analysis suggests that this feature may correspond to the short-range charge ordering state of Fe(3+) and Fe(4+). At high doping levels (0.5
Download full-text PDF
Source
http://dx.doi.org/10.1088/0953-8984/20/11/115211 DOI Listing Publication Analysis
Top Keywords
Dalton Trans
January 2025
Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
A theoretical investigation, employing density functional theory with the PBE functional and the Def2-TZVP basis set, comprehensively explores the geometric and electronic structures and properties of the boron doped scandium clusters BSc with = 2-3 and = 3-13. Introduction of B atoms significantly enhances the stability of the resulting clusters with respect to the initial counterparts. As the number of B atoms increases, the stability of the doped clusters improves, following the order: BSc > BSc > BSc > Sc.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, IIT Kharagpur, Kharagpur 721302, India.
A series of compositions NiInSn ( = 0-1) were synthesized by conventional high-temperature synthesis, and as-synthesized samples were checked by powder X-ray diffraction experiments. NiInSn ( < 0.7) mainly forms the ternary variant of the CoSn-type structure (6/), whereas, = 0.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
We performed all-atom and coarse-grained simulations of lipid bilayer mixtures of the unsaturated lipid DOPC, with saturated lipids having the same 18-carbon acyl tails and different headgroups, to understand their mechanical properties. The secondary lipids were DSPG, DSPA, DSPS, DSPC, and DSPE. The DOPC:DSPG system with 65:35 molar ratio was the softest, with area compressibility modulus ∼ 22% smaller than the pure DOPC value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!