Detailed measurements of the magnetic and transport properties of single crystals of La(1-x)Ca(x)MnO(3) (0.18 ≤ x ≤ 0.27) are summarized, and lead to the following conclusions. While temperature-dependent (magneto-) resistance measurements narrow the compositionally modulated metal-insulator (M-I) transition to lie between 0.19 ≤ x(c) ≤ 0.20 in the series studied, comparisons between the latter magnetic data provide the first unequivocal demonstration that (i) the presence of Griffiths-phase-like (GP) features do not guarantee colossal magnetoresistance (CMR), while confirming (ii) that neither are the appearance of such features a prerequisite for CMR. These data also reveal that (iii) whereas continuous magnetic transitions occur for 0.18 ≤ x ≤ 0.25, the universality class of these transitions belongs to that of a nearest-neighbour 3D Heisenberg model only for x≤0.20, beyond which complications due to GP-like behaviour occur. The implications of the variation (or lack thereof) in critical exponents and particularly critical amplitudes and temperatures across the compositionally mediated M-I transition support the assertion that the dominant mechanism underlying ferromagnetism across the M-I transition changes from ferromagnetic super-exchange (SE) stabilized by orbital ordering in the insulating phase to double-exchange (DE) in the orbitally disordered metallic regime. The variations in the acoustic spin-wave stiffness, D, and the coercive field, H(C), support this conclusion. These SE and DE interaction mechanisms are demonstrated to not only belong to the same universality class but are also characterized by comparable coupling strengths. Nevertheless, their percolation thresholds are manifestly different in this system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/41/415603DOI Listing

Publication Analysis

Top Keywords

≤ ≤
16
018 ≤
12
m-i transition
12
griffiths-phase-like features
8
colossal magnetoresistance
8
la1-xcaxmno3 018
8
8
≤ 027
8
universality class
8
evolution griffiths-phase-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!