A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural, magnetic and electronic structure studies of NdFe(1-x)Ni(x)O(3) (0 ≤ x ≤ 0.3). | LitMetric

We present here the structural, electronic structure, magnetic and Mössbauer studies of NdFe(1-x)Ni(x)O(3) (0≤x≤0.3) samples. All the samples exhibit a single-phase orthorhombic structure with space group Pbnm. The near-edge x-ray absorption fine structure (NEXAFS) studies reveal that, with the Ni substitution at Fe sites, a new spectral feature about 1.5 eV lower than the pre-edge structure of NdFeO(3) in the O K edge is observed due to the 3d contraction effect and is growing monotonically with the increase of Ni concentration. The Fe L(3,2), Ni L(3,2) and Nd M(5,4) edges confirm the trivalent state of Fe, Ni and Nd ions. The Mössbauer spectra fitted with two Zeeman sextets confirm the different surroundings of Ni around Fe ions. With the increase in Ni concentration, the sextets are broadened. The increase of quadrupole splitting and the decrease of the hyperfine field suggest the change in the ordered regime of the system. The magnetic behaviour at low temperatures is explained in the context of competition among moments of rare earth (Nd) and transition metal ions (Fe/Ni). The strong paramagnetic contribution of the Nd magnetic sublattice and spin flip phenomenon is observed from the temperature dependence of zero-field-cooled and field-cooled magnetization where spin crossover is observed. The isothermal hysteresis loops show a decrease of magnetization and increase of coercivity with the increase in temperature and complements magnetization versus temperature. The results are explained on the basis of the spin reorientation phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/32/325501DOI Listing

Publication Analysis

Top Keywords

electronic structure
8
studies ndfe1-xnixo3
8
increase concentration
8
structure
5
increase
5
structural magnetic
4
magnetic electronic
4
structure studies
4
ndfe1-xnixo3 ≤
4
≤ ≤
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!