Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190686 | PMC |
http://dx.doi.org/10.1074/jbc.M111.244830 | DOI Listing |
Adv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFSci Rep
January 2025
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.
View Article and Find Full Text PDFCephalalgia
January 2025
Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA.
Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy. Electronic address:
Anhedonia, a transdiagnostic symptom prevalent in depressive and psychotic disorders, poses a significant challenge for pharmacological intervention due to its association with impaired motivation. Understanding how psychotropic drugs can modulate this pathological domain and elucidating the molecular mechanisms underlying such effects are crucial endeavors in psychiatric research. In this study, we aimed to investigate the pro-motivational properties of lurasidone in a rat (Sprague Dawley males) model of anhedonia and to unravel the interplay between lurasidone and the brain regions critical for reward processing.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267, Gajeong-ro, Yuseong-gu, Daejeon, 34113Republic of Korea.
We developed a reversed-phased high-performance liquid chromatographic method combining ultraviolet detection and integrated pulsed amperometric detection for the simultaneous quantification of dopamine, 5-hydroxyindolacetic acid, homovanillic acid, serotonin, 3,4-dihydroxyphenylacetic acid, norepinephrine and epinephrine. All target components were completely separated in a C18 column with isocratic elution of 5% acetonitrile solution containing 8 mM HClO4 and 0.20 mM 1-octanesulfonic acid as an ion pairing reagent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!