Purpose: Micro(mi)RNAs negatively regulate a wide variety of genes through degradation or posttranslational inhibition of their target genes. The purpose of this study was to investigate the role of miR-23a in modulating RPE cell survival and gene expression in response to oxidative damage.
Methods: The expression level of miR-23a was measured in macular retinal pigment epithelial (RPE) cells of donor eyes with aged-related macular degeneration (AMD) and age-matched normal eyes by using qRT-PCR. Cultured human ARPE-19 cells were transfected with miR-23a mimic or inhibitor. Cell viability was assessed by the MTT assay. Apoptosis was determined by incubating cells with hydrogen peroxide (H(2)O(2)) or t-butylhydroperoxide (tBH). Caspase-3 activity and DNA fragmentation were measured by enzyme-linked immunosorbent assays. The protein relevant to apoptosis, such as Fas expression level, was analyzed by Western blot analysis.
Results: miR-23a expression was significantly downregulated in macular RPE cells from AMD eyes. H(2)O(2)-induced ARPE-19 cell death and apoptosis were increased by an miR-23a inhibitor and decreased by an miR-23a mimic. Computational analysis found a putative target site of miR-23a in the 3'UTR of Fas mRNA, which was verified by a luciferase reporter assay. Forced overexpression of miR-23a decreased H(2)O(2) or tBH-induced Fas upregulation, and this effect was blocked by downregulation of miR-23a.
Conclusions: The protection of RPE cells against oxidative damage is afforded by miR-23a through regulation of Fas, which may be a novel therapeutic target in retinal degenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.10-6632 | DOI Listing |
Int J Ophthalmol
January 2025
Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China.
Aim: To investigate whether interleukin-17A (IL-17A) gets involved in the mechanisms of inflammation-related retinal pigment epithelium (RPE) cells injury and its significance in age-related macular degeneration (AMD).
Mrthods: A sodium iodate (NaIO) mouse model as well as mice were established. The effects of inflammatory cytokines in RPE cells and retinal microglia before and after NaIO modeling and , were investigated using immunofluorescence, immunoprotein blotting, and quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), respectively.
ACS Appl Bio Mater
January 2025
Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey.
There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, University Hospital Munster, Munster, Germany.
Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.
View Article and Find Full Text PDFJ Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFbioRxiv
December 2024
Spotlight Therapeutics, Hayward, CA, USA.
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!