Effects of gas pockets on high-intensity focused ultrasound field.

IEEE Trans Ultrason Ferroelectr Freq Control

Bioelectrics Research Center, Kumamoto University, Kumamoto, Japan.

Published: June 2011

The paper describes experimental and numerical studies of the effects of gas pockets on a high-intensity focused ultrasound (HIFU) field. Air bubbles ranging from 0.8 to 2.4 mm in radius were produced in transparent polyacrylamide tissue-mimicking gels. A single-element 3.5-MHz HIFU transducer was used to sonicate the gel phantoms. The changes in the HIFU beam pattern for air bubbles at different positions were visualized by the Schlieren method. Quantitative measurements of pressure at the HIFU focus by a calibrated needle hydrophone showed considerable reduction in the focal pressure with the presence of an air pocket. The presence of a single 1.2-mm-radius air bubble, at a 5 mm axial pre-focal position, reduced the focal intensity by 50% and increased the lateral focal dimension by 50%. For air bubbles at pre-focal position close to the focus, lesion formation was observed not at the theoretical focus, but in front of the air bubble and the air bubble became a barrier for the post-focal ultrasound propagation. The effects of reflection were simulated numerically and were compared with the experiments. The results can be used as guidelines for evaluation of potential safety concerns produced by trapped gas-pockets in various HIFU therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2011.1930DOI Listing

Publication Analysis

Top Keywords

air bubbles
12
air bubble
12
effects gas
8
gas pockets
8
pockets high-intensity
8
high-intensity focused
8
focused ultrasound
8
pre-focal position
8
air
7
hifu
5

Similar Publications

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing.

Polymers (Basel)

December 2024

Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.

The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).

View Article and Find Full Text PDF

Spontaneous Bubble Growth Inside High-Saturation-Vapor-Pressure and High-Air-Solubility Liquids and Emulsion Droplets.

Langmuir

January 2025

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.

Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.

View Article and Find Full Text PDF

Purpose: The research investigates the efficacy of hydroxypropyl methylcellulose (HPMC) treatment in facilitating the development of compact water droplets on the rear surface of synthetic lenses with capsule imperfections during the process of fluid-air exchange.

Method: This study examined four patients with intraocular lens (IOL) implants and posterior capsule defects who experienced the formation of dense water droplets on the posterior surface following fluid-air exchange. When this occurrence obstructs fundus visualization during surgery, it is recommended to suspend the surgical procedure.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!