The wasp Agelaia pallipes pallipes is one of the most aggressive species from the neotropical region, causing many stinging accidents every year, characterized by severe envenoming reactions. The identification of peptides is important for understanding the envenoming process; however, the tiny amount of venom produced by these insects makes this task a challenge, using classical analytical approaches. Thus, the venom was previously fractionated, and the sequences were obtained through the use of electrospray ionization with a tridimensional ion-trap and time-of-flight mass analysis under CID conditions. This approach permitted the sequence assignment of nine peptides. The presence of type -d and -w ions generated from the fragmentation of the side chains was used to resolve I/L ambiguity. The distinction between K and Q residues was achieved through esterification of the α- and ε-amino groups in the peptides, followed by mass spectrometry analysis. Six of these peptides were short, linear and polycationic, while the three other peptides presented a single disulfide bridge. The use of reduction and alkylation protocols, followed by ESI-IT-TOF/MS analysis under CID conditions, permitted easy sequencing of the three peptides presenting this post-translational modification. These peptides presented activity related to mast cell degranulation, hemolysis, or even the chemotaxis of leukocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2011.06.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!