Methods to avoid the presence of selectable marker genes (SMG) in transgenic plants are available but not implemented in many crop species. We assessed the efficiency of simple marker-free Agrobacterium-mediated transformation techniques in alfalfa: regeneration without selection, or marker-less, and co-transformation with two vectors, one containing the SMG and one containing a non-selected gene. To easily estimate the efficiency of marker-less transformation, the nptII and the GUS markers were used as non-selected genes. After Agrobacterium treatment, somatic embryos were regenerated without selection. The percentage of transgenic embryos was determined by a second cycle of regeneration using the embryos as starting material, in the presence of kanamycin, by PCR screening of T1 progenies, and by the GUS test. In two experiments, from 0 to 1.7% of the somatic embryos were transgenic. Co-transformation was performed with two vectors, one with the hemL SMG and one with the unselected nptII gene, each carried by a different culture of Agrobacterium. Only 15 putative co-transformed plants were regenerated from two experiments, with an average co-transformation percentage of 3.7. Southern blot hybridizations and/or T(1) progeny segregation were used to confirm transgene integration, and qPCR was also used to estimate the T-DNA copy number. In the T(1) progenies obtained by crossing with a non-transgenic pollinator, marker-free segregants were obtained. Both marker-free approaches showed very low efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1107-xDOI Listing

Publication Analysis

Top Keywords

simple marker-free
8
transformation techniques
8
techniques alfalfa
8
somatic embryos
8
assessment simple
4
marker-free
4
marker-free genetic
4
genetic transformation
4
alfalfa methods
4
methods avoid
4

Similar Publications

CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters.

Nucleic Acids Res

October 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.

The efficient refactoring of natural product biosynthetic gene clusters (BGCs) for activating silent BGCs is a central challenge for the discovery of new bioactive natural products. Herein, we have developed a simple and robust CRISETR (CRISPR/Cas9 and RecET-mediated Refactoring) technique, combining clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 and RecET, for the multiplexed refactoring of natural product BGCs. By this approach, natural product BGCs can be refactored through the synergistic interaction between RecET-mediated efficient homologous recombination and the CRISPR/Cas9 system.

View Article and Find Full Text PDF

Background: Glaesserella parasuis (G. parasuis) is the causative agent of Glässer's disease, which causes significant economic losses in the swine industry. However, research on the pathogenesis of G.

View Article and Find Full Text PDF

The budding yeast Saccharomyces cerevisiae is an excellent model organism for studying a variety of critical cellular processes. Traditional methods to knock in or -out at specific yeast loci utilize polymerase chain reaction-based techniques, in which marker cassettes with gene-specific homologies are integrated into the genome via homologous recombination. While simple and cost-effective, these methods are limited by marker availability when multiple edits are desired.

View Article and Find Full Text PDF

Toward drift-free high-throughput nanoscopy through adaptive intersection maximization.

Sci Adv

May 2024

Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Single-molecule localization microscopy (SMLM) often suffers from suboptimal resolution due to imperfect drift correction. Existing marker-free drift correction algorithms often struggle to reliably track high-frequency drift and lack the computational efficiency to manage large, high-throughput localization datasets. We present an adaptive intersection maximization-based method (AIM) that leverages the entire dataset's information content to minimize drift correction errors, particularly addressing high-frequency drift, thereby enhancing the resolution of existing SMLM systems.

View Article and Find Full Text PDF

Based on the electrochemical impedance method, a marker-free biosensor with aptamer as a biometric element was developed for the determination of doxorubicin (DOX). By combining aptamer with rigid tetrahedral DNA nanostructures (TDNs) and fixing them on the surface of gold electrode (GE) as biometric elements, the density and directivity of surface nanoprobes improved, and DOX was captured with high sensitivity and specificity. DOX was captured by immobilized aptamers on the GE, which inhibited electron transfer between the GE and [Fe(CN)6]/ in solution, resulting in a change in electrochemical impedance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!