Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, the results of the thermo-elastic analysis performed on the stereo channel of the imaging system Integrated Observatory System for the BepiColombo European Space Agency mission to Mercury are presented. The aim of the work is to determine the effects of ambient parameter variations on the equipment performance; the optical performance is changing during the mission lifetime primarily because of the optics misalignments and deformations induced by temperature variations. The camera optics and their mountings are modeled and processed by a thermo-mechanical finite element model (FEM) program, which reproduces the expected optics and structure thermo-elastic deformations in the instrument foreseen operative temperature range, i.e., between -20 °C and 30 °C. The FEM outputs are elaborated using a MATLAB optimization routine: an algorithm based on nonlinear least square data fitting is adopted to determine the surface equation (plane, spherical, nth polynomial) which best fits the deformed optical surfaces. The obtained surfaces are then directly imported into a ZEMAX code for sequential ray-tracing analysis. Variations of the optical spot diagrams, modulation transfer function curves, and ensquared energy are then computed. The overall analysis shows that the preferred solution for mounting the optical elements is adopting the kinematic constraints instead of using the classical glue solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.50.002836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!