Aims: N-n-Butyl haloperidol iodide (F(2)) is a novel compound derived from haloperidol. In our previous work, F(2) was found to be an L-type calcium channel blocker which played a protective role in rat heart ischemic-reperfusion injury in a dose-dependent manner. In the current study, we aimed to investigate the effects and some possible mechanisms of F(2) on calcium transients in hypoxic/ischemic rat cardiac myocytes.
Methods And Results: Calcium transients' images of rat cardiac myocytes were recorded during simulated hypoxia, using a confocal calcium imaging system. The amplitude, rising time from 25% to 75% (RT25-75), decay time from 75% to 25% (DT75-25) of calcium transients, and resting [Ca(2+)](i) were extracted from the images by self-coding programs. In this study, hypoxia produced a substantial increase in diastolic [Ca(2+)](i) and reduced the amplitude of calcium transients. Both RT25-75 and DT75-25 of Ca(2+) transients were significantly prolonged. And F(2) could reduce the increase in resting [Ca(2+)](i)and the prolongation of RT25-75 and DT75-25 of Ca(2+) transients during hypoxia. F(2) also inhibited the reduction in amplitude of calcium transients which was caused by 30-min hypoxia. The activity of SERCA2a (sarcoplasmic reticulum Ca(2+)-ATPase, determined by test kits) decreased after 30-min ischemia, and intravenous F(2) in rats could ameliorate the decreased activity of SERCA2a. The inward and outward currents of NCX (recorded by whole-cell patch-clamp analysis) were reduced during 10-min hypoxia, and F(2) further inhibited the outward currents of NCX during 10-min hypoxia. All these data of SERCA2a and NCX might be responsible for the changes in calcium transients during hypoxia.
Conclusion: Our data suggest that F(2) reduced changes in calcium transients that caused by hypoxia/ischemia, which was regarded to be a protective role in calcium homeostasis of ventricular myocytes, probably via changing the function of SERCA2a.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000329964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!