Ageing dynamics of a re-entrant ferromagnet stage-2 Cu(0.8)Co(0.2)Cl(2) graphite intercalation compound has been studied using DC magnetization measurements. This compound undergoes successive transitions at the transition temperatures T(c) (≈8.7 K) and T(RSG) (≈3.3 K). The relaxation rate S(ZFC)(t) exhibits a characteristic peak at t(cr) below T(c). The peak time t(cr) at constant t(w) shows a local maximum around 5.5 K, indicating a slow dynamics arising from a frustrated nature of the ferromagnetic phase. It drastically increases with decreasing temperature below T(RSG). The spin configuration imprinted at the stop and wait process at a stop temperature T(s) (

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/18/46/007DOI Listing

Publication Analysis

Top Keywords

ageing dynamics
8
graphite intercalation
8
intercalation compound
8
dynamics ferromagnetic
4
ferromagnetic re-entrant
4
re-entrant spin
4
spin glass
4
glass phases
4
phases stage-2
4
stage-2 cu080co020cl2
4

Similar Publications

Molecular dynamics of chemotactic signalling orchestrates dental pulp stem cell fibrosis during aging.

Front Cell Dev Biol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.

Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.

View Article and Find Full Text PDF

Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis.

Biotechnol Appl Biochem

January 2025

Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.

The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!