Optimal strategy for controlling transport in inertial Brownian motors.

J Phys Condens Matter

Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany. Institute of Physics, University of Silesia, P-40-007 Katowice, Poland.

Published: November 2005

In order to optimize the directed motion of an inertial Brownian motor, we identify the operating conditions that both maximize the motor current and minimize its dispersion. Extensive numerical simulation of an inertial rocked ratchet displays that two quantifiers, namely the energetic efficiency and the Péclet number (or equivalently the Fano factor), suffice to determine the regimes of optimal transport. The effective diffusion of this rocked inertial Brownian motor can be expressed as a generalized fluctuation theorem of the Green-Kubo type.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/17/47/007DOI Listing

Publication Analysis

Top Keywords

inertial brownian
12
brownian motor
8
optimal strategy
4
strategy controlling
4
controlling transport
4
inertial
4
transport inertial
4
brownian motors
4
motors order
4
order optimize
4

Similar Publications

How to define temperature in active systems?

J Chem Phys

December 2024

Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany.

We are used to measuring temperature with a thermometer, and we know from everyday life that different types of thermometers measure the same temperature. This experience can be based on equilibrium thermodynamics, which explains the equivalence of different possibilities to define temperature. In contrast, for systems out of equilibrium such as active matter, measurements performed with different thermometers can generally lead to different temperature values.

View Article and Find Full Text PDF

Inertial Active Matter with Coulomb Friction.

Phys Rev Lett

November 2024

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.

Friction is central to the motion of active (self-propelled) objects such as bacteria, animals, and robots. While in a viscous fluid friction is described by Stokes's law, objects in contact with other solid bodies are often governed by more complex empirical friction laws. Here, we study active particles subject to Coulomb friction using a combination of active granular experiments and simulations, supported by theoretical predictions.

View Article and Find Full Text PDF

Absolute negative mobility of an inertial Brownian particle in an oscillating potential.

Phys Rev E

October 2024

Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

Transport of an inertial Brownian particle in an oscillating potential is numerically investigated in the presence of an external constant force. The oscillating potential can break thermodynamic equilibrium. Within appropriate parameter regimes, the particle moves in a direction opposite to the constant force, which means that the system can exhibit the phenomenon of absolute negative mobility (ANM).

View Article and Find Full Text PDF

The rheology of suspensions of non-Brownian soft spheres is studied across jamming but also across the viscous and inertial regimes using a custom pressure- and volume-imposed rheometer. The study shows that the granular rheology found for suspensions of hard spheres can be extended to a soft granular rheology (SGranR) by renormalizing the critical volume fraction and friction coefficient to pressure-dependent values and using the addition of the viscous and inertial stress scales. This SGranR encompasses rheological behaviors on both sides of the jamming transition, resulting in an approximate collapse of the rheological data into two branches when scaled with the distance to jamming, as observed for soft colloids.

View Article and Find Full Text PDF

We propose an extension to the inertial spin model (ISM) of flocking and swarming. The model has been introduced to explain certain dynamic features of swarming (second sound, a lower than expected dynamic critical exponent) while preserving the mechanism for onset of order provided by the Vicsek model. The inertial spin model (ISM) has only been formulated with an imitation ("ferromagnetic") interaction between velocities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!