In order to optimize the directed motion of an inertial Brownian motor, we identify the operating conditions that both maximize the motor current and minimize its dispersion. Extensive numerical simulation of an inertial rocked ratchet displays that two quantifiers, namely the energetic efficiency and the Péclet number (or equivalently the Fano factor), suffice to determine the regimes of optimal transport. The effective diffusion of this rocked inertial Brownian motor can be expressed as a generalized fluctuation theorem of the Green-Kubo type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/17/47/007 | DOI Listing |
J Chem Phys
December 2024
Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany.
We are used to measuring temperature with a thermometer, and we know from everyday life that different types of thermometers measure the same temperature. This experience can be based on equilibrium thermodynamics, which explains the equivalence of different possibilities to define temperature. In contrast, for systems out of equilibrium such as active matter, measurements performed with different thermometers can generally lead to different temperature values.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
Friction is central to the motion of active (self-propelled) objects such as bacteria, animals, and robots. While in a viscous fluid friction is described by Stokes's law, objects in contact with other solid bodies are often governed by more complex empirical friction laws. Here, we study active particles subject to Coulomb friction using a combination of active granular experiments and simulations, supported by theoretical predictions.
View Article and Find Full Text PDFPhys Rev E
October 2024
Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
Transport of an inertial Brownian particle in an oscillating potential is numerically investigated in the presence of an external constant force. The oscillating potential can break thermodynamic equilibrium. Within appropriate parameter regimes, the particle moves in a direction opposite to the constant force, which means that the system can exhibit the phenomenon of absolute negative mobility (ANM).
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Université Paris Cité, CNRS, Matière et Systèmes Complexes (MSC) UMR 7057, Paris, France.
The rheology of suspensions of non-Brownian soft spheres is studied across jamming but also across the viscous and inertial regimes using a custom pressure- and volume-imposed rheometer. The study shows that the granular rheology found for suspensions of hard spheres can be extended to a soft granular rheology (SGranR) by renormalizing the critical volume fraction and friction coefficient to pressure-dependent values and using the addition of the viscous and inertial stress scales. This SGranR encompasses rheological behaviors on both sides of the jamming transition, resulting in an approximate collapse of the rheological data into two branches when scaled with the distance to jamming, as observed for soft colloids.
View Article and Find Full Text PDFPhys Rev E
July 2024
Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), CONICET and Universidad Nacional de La Plata, B1900BTE La Plata, Argentina.
We propose an extension to the inertial spin model (ISM) of flocking and swarming. The model has been introduced to explain certain dynamic features of swarming (second sound, a lower than expected dynamic critical exponent) while preserving the mechanism for onset of order provided by the Vicsek model. The inertial spin model (ISM) has only been formulated with an imitation ("ferromagnetic") interaction between velocities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!