The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila atlastin dimerizes in the presence of GTPγS but is monomeric with GDP or without nucleotide. Oligomerization requires the juxtamembrane middle domain three-helix bundle, as does efficient GTPase activity. A soluble version of the N-terminal cytoplasmic domain that contains the GTPase domain and the middle domain three-helix bundle serves as a potent, concentration-dependent inhibitor of membrane fusion both in vitro and in vivo. However, atlastin domains lacking the middle domain are without effect. GTP-dependent dimerization of atlastin generates an enzymatically active protein that drives membrane fusion after nucleotide hydrolysis and conformational reorganization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131361PMC
http://dx.doi.org/10.1073/pnas.1105056108DOI Listing

Publication Analysis

Top Keywords

membrane fusion
16
middle domain
16
gtpase atlastin
8
c-terminal cytoplasmic
8
cytoplasmic tail
8
domain three-helix
8
three-helix bundle
8
atlastin
7
domain
7
fusion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!