N-methyl-D-aspartate receptors (NMDARs) subserve numerous neurophysiological and neuropathological processes in the cerebral cortex. Their activation requires the binding of glutamate and also of a coagonist. Whereas glycine and D-serine (D-ser) are candidates for such a role at central synapses, the nature of the coagonist in cerebral cortex remains unknown. We first show that the glycine-binding site of NMDARs is not saturated in acute slices preparations of medial prefrontal cortex (mPFC). Using enzymes that selectively degrade either D-ser or glycine, we demonstrate that under the present conditions, D-ser is the principle endogenous coagonist of synaptic NMDARs at mature excitatory synapses in layers V/VI of mPFC where it is essential for long-term potentiation (LTP) induction. Furthermore, blocking the activity of glia with the metabolic inhibitor, fluoroacetate, impairs NMDAR-mediated synaptic transmission and prevents LTP induction by reducing the extracellular levels of D-serine. Such deficits can be restored by exogenous D-ser, indicating that the D-amino acid mainly originates from glia in the mPFC, as further confirmed by double-immunostaining studies for D-ser and anti-glial fibrillary acidic protein. Our findings suggest that D-ser modulates neuronal networks in the cerebral cortex by gating the activity of NMDARs and that altering its levels is relevant to the induction and potentially treatment of psychiatric and neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhr130DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
12
excitatory synapses
8
prefrontal cortex
8
ltp induction
8
d-ser
6
cortex
5
glial d-serine
4
d-serine gates
4
gates nmda
4
nmda receptors
4

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

Imagine going left versus imagine going right: whole-body motion on the lateral axis.

Sci Rep

December 2024

Creative Robotics Lab, UNSW, Sydney, 2021, Australia.

Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is  assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.

View Article and Find Full Text PDF

Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.

Nat Commun

December 2024

Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.

The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions.

View Article and Find Full Text PDF

The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!