Background: Vitamin D has been proposed as a promoter of immune homeostasis in multiple sclerosis (MS). During the past decade, the focus of the effects of vitamin D has been on dendritic cells and on T cells. Since there is an increasing interest in the role of B cells in the pathophysiology of MS, we studied the role of vitamin D on B cells in vivo in patients with MS.

Objective: We explored the effects of 12 weeks high-dose vitamin D(3) supplementation on peripheral B cell differentiation, immunoglobulin production and levels of B cell activating factor (BAFF) in 15 patients with MS.

Methods: Circulating B cell subsets were characterized by flow cytometry. Plasma immunoglobulin levels were assessed by nephelometry. Plasma BAFF levels were assessed by enzyme-linked immunosorbent assay (ELISA).

Results: Although a significant increase serum 25-hydroxyvitamin D was induced, we found no significant shift in B cell differentiation, isotype switching, or plasma BAFF levels.

Conclusion: In patients with MS, supplementation of high doses vitamin D(3) does not have substantial effects on phenotypic markers of B cell differentiation in circulating B cells. Future studies may unravel more subtle changes in the B cell compartment, either in the circulation or in the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1352458511412655DOI Listing

Publication Analysis

Top Keywords

cell differentiation
16
vitamin supplementation
8
supplementation peripheral
8
peripheral cell
8
differentiation isotype
8
isotype switching
8
multiple sclerosis
8
levels assessed
8
plasma baff
8
cell
7

Similar Publications

Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14.

Commun Biol

January 2025

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.

View Article and Find Full Text PDF

This study compared two Annona squamosa L. cultivars, Abdelrazik (Annona A.) and Balady (Annona B.

View Article and Find Full Text PDF

The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!