The effect of an inert small molecule osmolyte, trimethyl amine N-oxide (TMAO), upon the conformational equilibria of Escherichia coli adenylate kinase was studied using time-resolved FRET. The relative populations of open and closed clefts between the LID and the CORE domains were measured as functions of the concentrations of the substrate ATP over the concentration range 0-18 mM and TMAO over the concentration range 0-4 M. A model was constructed according to which the enzyme exists in equilibrium among four conformational states, corresponding to combinations of open and closed conformations of the LID-CORE and AMP-CORE clefts. ATP is assumed to bind only to those conformations with the closed LID-CORE cleft, and TMAO is assumed to be differentially excluded as a hard spherical particle from each of the four conformations in accordance with calculations based upon x-ray crystallographic structures. This model was found to describe quantitatively the dependence of the fraction of the closed LID-CORE cleft upon the concentrations of both ATP and TMAO over the entire range of concentrations with just five undetermined parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123985PMC
http://dx.doi.org/10.1016/j.bpj.2011.03.065DOI Listing

Publication Analysis

Top Keywords

conformational equilibria
8
adenylate kinase
8
open closed
8
concentration range
8
closed lid-core
8
lid-core cleft
8
modulation functionally
4
functionally conformational
4
equilibria adenylate
4
kinase high
4

Similar Publications

Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.

Subcell Biochem

December 2024

IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.

Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

The design of potent RAS inhibitors benefits from a molecular understanding of the dynamics in KRAS and NRAS and their oncogenic mutants. Here we characterize switch-1 dynamics in GTP-state KRAS and NRAS by P NMR, by N relaxation dispersion NMR, hydrogen-deuterium exchange mass spectrometry (HDX-MS), and molecular dynamics simulations. In GMPPNP-bound KRAS and NRAS, we see the co-existence of two conformational states, corresponding to an "inactive" state-1 and an "active" state-2, as previously reported.

View Article and Find Full Text PDF

Effects of allosteric effectors on oxygen binding to crystals of hemoglobin in the R-quaternary structure.

Protein Sci

January 2025

Division of Biophysics, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan.

Much is known about how allosteric effectors influence the equilibrium between the relaxed (R) and tense (T) states of hemoglobin (Hb), but little is known about how and to what extent the effectors lower the intrinsic O affinity of each allosteric state, especially the R-state. Here, we provide a thorough characterization of the O equilibria of effector-bound and unbound R-quaternary form crystals of horse Hb without a quaternary structural switching. In the absence of effectors, R crystals of horse Hb were shown to bind O noncooperatively with a very high affinity virtually identical to that of R crystals of human Hb.

View Article and Find Full Text PDF

When can flexible weak polyelectrolytes be treated as effective rigid objects?

J Chem Phys

November 2024

Department of Chemistry, Physics and Environmental and Soil Sciences and Agrotecnio, University of Lleida, Lleida, Catalonia, Spain.

Conformational and ionization equilibria of flexible weak polyelectrolytes (PEs) are, in general, strongly coupled. In this article, we analyze the effect of averaging over (or "contracting") the conformational degrees of freedom so that the original flexible molecule is replaced by an effective rigid object with the same ionization properties. As a result, one obtains the so-called Site Binding (SB) model, much easier to treat both theoretically and computationally, and extensively used to characterize the ionization properties of PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!