Immunological synapses are specialized intercellular contacts formed by several types of immune cells in contact with target cells or antigen-presenting cells. A late-stage immune synapse is commonly a bulls-eye pattern of immune cell receptor-ligand pairs surrounded by integrin complexes. Based on crystal structures, the intermembrane distance would be ∼15 nm for many immune cell receptor-ligand pairs, but ∼40 nm for integrin-ligand pairs. Close proximity of these two classes of intermembrane bonds would require significant membrane bending and such proteins can segregate according to their size, which may be key for receptor triggering. However, tools available to evaluate the intermembrane organization of the synapse are limited. Here, we present what we believe to be a novel approach to test the importance of size in the intercellular organization of proteins, using live-cell microscopy of a size-series of fluorescently-labeled molecules and quantum dots to act as molecular rulers. Small particles readily colocalized at the synapse with MHC class I bound to its cognate natural killer cell receptor, whereas particles larger than 15 nm were increasingly segregated from this interaction. Combined with modeling of the partitioning of the particles by scaled-particle adsorption theory, these molecular rulers show how membrane-bending elasticity can drive size-dependent exclusion of proteins within immune synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123984 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.05.013 | DOI Listing |
Chem Sci
January 2025
Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Barcelona Spain
Förster resonance energy transfer (FRET) is a powerful technique used to investigate the conformational preferences of biosystems, and molecular simulations have emerged as an ideal complement to FRET due to their ability to provide structural models that can be compared with experiments. This synergy is however hampered by the approximations underlying Förster theory regarding the electronic coupling between the participating dyes: a dipole-dipole term attenuated by a simple dielectric screening factor 1/ that depends on the refractive index of the medium. Whereas the limits of the dipole approximation are well-known, detailed insights on how environment effects deviate from the 1/ assumption and modify the distance dependence that characterizes FRET as a spectroscopic ruler are still not well understood, especially in biosystems characterized by significant structural disorder.
View Article and Find Full Text PDFAdv Mater
January 2025
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities.
View Article and Find Full Text PDFQuant Plant Biol
September 2024
Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!