Background: Phenotypic similarities among cave-dwelling animals displaying troglomorphic characters (e.g. reduced eyes and lack of pigmentation) have induced a long-term discussion about the forces driving convergent evolution. Here we introduce Garra barreimiae Fowler & Steinitz, 1956, as an interesting system to study the evolution of troglomorphic characters. The only hitherto known troglomorphic population of this species lives in Al Hoota Cave (Sultanate of Oman) close to a surface population. As a first approach, we assessed the genetic differentiation between the two morphotypes of G. barreimiae to determine whether gene flow still occurs.
Results: We analysed the mitochondrial control region (CR). In G. barreimiae the CR starts immediately downstream of the tRNA-Thr gene, while the tRNA-Pro gene is missing at this genomic location. Interestingly, a putative tRNA-Pro sequence is found within the CR. The phylogenetic analyses of the CR sequences yielded a tree divided into three clades: Clade 1 has a high genetic distance to the other clades and contains the individuals of three populations which are separated by a watershed from all the others. Clade 2 comprises the individuals from Wadi Bani Khalid, the geographically most remote population. Clade 3 comprises all other populations investigated including that of Al Hoota Cave. The latter forms a haplogroup which also includes individuals from the adjacent surface population.
Conclusions: Our data indicates that the troglomorphic cave population is of quite recent origin supporting the hypothesis that selection drives the fast evolution of troglomorphic traits. In this context pleiotropic effects might play an important role as it has been shown for Astyanax. There seems to be some gene flow from the cave population into the adjacent surface populations. One blind individual, found at a surface locality geographically distinct from Al Hoota Cave, is genetically differentiated from the other blind specimens indicating the probable existence of another cave population of G. barreimiae. The phylogeographic analyses show that while some of the surface populations are either still in contact or have been until recently, the population Wadi Bani Khalid is genetically separated. One group consisting of three populations is genetically highly differentiated questioning the conspecifity with G. barreimiae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146880 | PMC |
http://dx.doi.org/10.1186/1471-2148-11-172 | DOI Listing |
Sci Rep
July 2017
Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria.
Cave-dwelling taxa often share the same phenotypic modifications like absence of eyes and pigmentation. These "troglomorphic characters" are expressed in the populations of Garra barreimiae from the Al Hoota Cave and nearby Hoti Pit in Northern Oman. Surface morphotypes of this cyprinid species are common throughout the distribution area.
View Article and Find Full Text PDFBMC Res Notes
August 2014
Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010 Vienna, Austria.
Background: Garra barreimiae is a cyprinid fish from the southeastern Arabian Peninsula, which inhabits regularly desiccating wadis and survives in isolated ponds or underground. In 1984 a cave-dwelling population was found in the Al Hoota cave system and previous genetic analyses revealed some differentiation with limited gene flow between the surface populations and the cave population. Since no suitable markers are available for evaluation of gene flow between the cave population and the adjacent surface populations, we focused on designing and establishing novel microsatellite markers from next generation sequencing data.
View Article and Find Full Text PDFBMC Evol Biol
June 2011
1st Zoological Department, Laboratory of Molecular Systematics, Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria.
Background: Phenotypic similarities among cave-dwelling animals displaying troglomorphic characters (e.g. reduced eyes and lack of pigmentation) have induced a long-term discussion about the forces driving convergent evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!