Background: 5-Hydroxymethylcytosine (5hmC) was recently found to be abundantly present in certain cell types, including embryonic stem cells. There is growing evidence that TET proteins, which convert 5-methylcytosine (5mC) to 5hmC, play important biological roles. To further understand the function of 5hmC, an analysis of the genome-wide localization of this mark is required.

Results: Here, we have generated a genome-wide map of 5hmC in human embryonic stem cells by hmeDIP-seq, in which hydroxymethyl-DNA immunoprecipitation is followed by massively parallel sequencing. We found that 5hmC is enriched in enhancers as well as in gene bodies, suggesting a potential role for 5hmC in gene regulation. Consistent with localization of 5hmC at enhancers, 5hmC was significantly enriched in histone modifications associated with enhancers, such as H3K4me1 and H3K27ac. 5hmC was also enriched in other protein-DNA interaction sites, such as OCT4 and NANOG binding sites. Furthermore, we found that 5hmC regions tend to have an excess of G over C on one strand of DNA.

Conclusions: Our findings suggest that 5hmC may be targeted to certain genomic regions based both on gene expression and sequence composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218842PMC
http://dx.doi.org/10.1186/gb-2011-12-6-r54DOI Listing

Publication Analysis

Top Keywords

embryonic stem
12
stem cells
12
5hmc enriched
12
5hmc
11
associated enhancers
8
gene bodies
8
human embryonic
8
5-hydroxymethylcytosine associated
4
enhancers
4
gene
4

Similar Publications

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!