Amyloid-beta (Aβ) plaques are a hallmark of Alzheimer's disease. Several proteases including plasmin are thought to promote proteolytic cleavage and clearance of Aβ from brain. The activity of both plasmin and tissue plasminogen activator are reduced in Alzheimer's disease brain, while the tissue plasminogen activator inhibitor neuroserpin is up-regulated. Here, the relationship of tissue plasminogen activator and neuroserpin to Aβ levels is explored in mouse models. Aβ(1-42) peptide injected into the frontal cortex of tissue plasminogen activator knockout mice is slow to disappear compared to wildtype mice, whereas neuroserpin knockout mice show a rapid clearance of Aβ(1-42). The relationship of neuroserpin and tissue plasminogen activator to Aβ plaque formation was studied further by knocking-out neuroserpin in the human amyloid precursor protein-J20 transgenic mouse. Compared to the J20-transgenic mouse, the neuroserpin-deficient J20-transgenic mice have a dramatic reduction of Aβ peptides, fewer and smaller plaques, and more active tissue plasminogen activator associated with plaques. Furthermore, neuroserpin-deficient J20-transgenic mice have near normal performances in the Morris water maze, in contrast to the spatial memory defects seen in J20-transgenic mice. These results support the concept that neuroserpin inhibition of tissue plasminogen activator plays an important role both in the accumulation of brain amyloid plaques and loss of cognitive abilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2011.07359.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!