Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
February 2025
Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012.
Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
ISME Commun
January 2025
Department of Microbiology, Universität Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany.
The cyanobacterium causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the phycosphere microbiome.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address:
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential.
View Article and Find Full Text PDFIn an interview with Samantha Nelson, a scientific editor of Cell Chemical Biology, the authors of the review entitled "Metabolic tug-o-war: Microbial metabolism shapes colonization resistance against enteric pathogens" share their perspectives on the field and their lives as scientists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!