Structural variation of human genome such as duplications and deletions, collectively termed copy number variation (CNV), is one of the major genetic variations. Reliable and efficient measurement of CNV will be essential to develop diagnostic tools for CNV-related diseases. We established a strategy based on multiplex PCR and capillary electrophoresis (CE) for reliable CNV assay. Multiplex-PCR was performed using five primer sets for target loci and a diploid control (DC). We designed primers satisfying three conditions: different size of each PCR product for CE separation, unified annealing temperature for multiplex PCR, and suitability for quantitative PCR (qPCR). We defined the accurate PCR cycles for quantification of copy numbers at which the amplifications for all targets were supposed to be exponential, named maximum doubling cycle. CE was carried out with PCR product and the ratio of the peak areas (target/diploid control) was calculated. Our multiplex PCR-CE analysis reliably determined copy numbers of X chromosome with variable copies ranging from 1 to 5 and showed higher reliability than qPCR (correlation coefficient 0.996 versus 0.898). When measuring the six randomly selected autosomal CNV targets using our multiplex PCR-CE, the results agreed with those from qPCR. In addition, our strategy was validated for the broad application to commonly used CE devices. Taken together, this assay will be useful for accurate analysis of multiple disease-associated CNVs in a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201100093DOI Listing

Publication Analysis

Top Keywords

copy number
8
capillary electrophoresis
8
multiplex pcr
8
pcr product
8
copy numbers
8
multiplex pcr-ce
8
pcr
6
multiplex
5
strategy high-fidelity
4
high-fidelity multiplex
4

Similar Publications

Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.

View Article and Find Full Text PDF

Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.

Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.

View Article and Find Full Text PDF

Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!