To assess the recovery effect of water-soluble components of nacre on wound healing of burns, water-soluble nacre (WSN) was obtained from powdered nacre. Alterations to WSN-mediated wound healing characteristics were examined in porcine skin with deep second-degree burns; porcine skin was used as a proxy for human. When WSN was applied to a burned area, the burn-induced granulation sites were rapidly filled with collagen, and the damaged dermis and epidermis were restored to the appearance of normal skin. WSN enhanced wound healing recovery properties for burn-induced apoptotic and necrotic cellular damage and spurred angiogenesis. Additionally, WSN-treated murine fibroblast NIH3T3 cells showed increased proliferation and collagen synthesis. Collectively, the findings indicate that WSN improves the process of wound healing in burns by expeditiously restoring angiogenesis and fibroblast activity. WSN may be useful as a therapeutic agent, with superior biocompatibility to powdered nacre, and evoking less discomfort when applied to a wounded area.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-011-1088-4DOI Listing

Publication Analysis

Top Keywords

wound healing
20
porcine skin
12
angiogenesis fibroblast
8
healing burns
8
powdered nacre
8
wound
5
healing
5
wsn
5
nacre-driven water-soluble
4
water-soluble factors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!