Hyperhomocysteinemia is an independent risk factor for ischemic cardiovascular diseases, but its causal role in atherothrombosis remains controversial. Proatherogenic and/or prothrombotic effects may underlie the potential causal relation between hyperhomocysteinemia and cardiovascular events. Here, the effects of selective lowering of plasma homocysteine, plasma cholesterol, or both on endothelial function and on atherogenesis in male hyperlipidemic and hyperhomocysteinemic C57BL/6 low-density lipoprotein receptor (LDLr)(-/-)/cystathionine-β-synthase (CBS)(+/-)-deficient mice were investigated. Second, we evaluated whether selective homocysteine lowering has anti-thrombotic effects in a model of arterial thrombosis. A hyperhomocysteinemic and atherogenic diet was started at the age of 12 weeks. Three weeks later, gene transfer was performed with E1E3E4-deleted adenoviral vectors for hepatocyte-restricted overexpression of CBS (AdCBS) or of the LDLr (AdLDLr), or with the control vector Adnull. In a fourth group, AdCBS and AdLDLr were co-administered. Selective homocysteine lowering but not selective cholesterol lowering restored endothelial function at 6 weeks after gene transfer. Intimal area in the aortic root and in the brachiocephalic artery at 13 weeks was more than 100-fold (p < 0.001) smaller in AdLDLr and AdCBS/AdLDLr mice than in control mice and AdCBS mice. No differences in intimal area were observed between control mice and AdCBS mice. In a model of carotid artery thrombosis, the average time to first occlusion and to stable occlusion were 1.9-fold (p < 0.01) and 2.1-fold longer (p < 0.01), respectively, in AdCBS-treated mice than in control mice. Taken together, these data show that correction of endothelial dysfunction following selective homocysteine lowering has anti-thrombotic but no anti-atherogenic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-011-0778-7DOI Listing

Publication Analysis

Top Keywords

selective homocysteine
12
homocysteine lowering
12
endothelial function
8
gene transfer
8
selective
5
lowering
5
correction endothelial
4
endothelial dysfunction
4
dysfunction selective
4
homocysteine
4

Similar Publications

A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques.

Small

January 2025

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.

The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

Methylenetetrahydrofolate Reductase Gene Polymorphism as a Risk Factor for Coronary Artery Disease.

Indian J Clin Biochem

January 2025

Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka 575004 India.

Hyperhomocysteinemia (HHcy) is one of the factors contributing to the pathogenesis of coronary artery disease (CAD). Besides nutritional deficiency disorders, genetic polymorphism predominantly related to point mutation in the gene coding for Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in the metabolism methionine-homocysteine (Hcy) has been implicated in HHcy. PubMed survey related to MTHFR gene polymorphism in CAD retrieved 143 articles from which 20 were selected in which MTHFR gene polymorphism and Hcy were estimated.

View Article and Find Full Text PDF

A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases.

Biotechnol Bioeng

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.

N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.

View Article and Find Full Text PDF

Objectives: This study investigates the relationship between serum homocysteine, blood lipids, and perinatal outcomes in patients with diet-controlled gestational diabetes mellitus (GDM) and those with normal glucose tolerance (NGT).

Material And Methods: A prospective cohort of 150 diet-controlled GDM patients and 150 pregnant women with NGT, all delivering at our hospital, were selected based on predefined criteria. Data on demographics, physical parameters, and perinatal outcomes were compiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!