Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136693PMC
http://dx.doi.org/10.1007/s00253-011-3391-3DOI Listing

Publication Analysis

Top Keywords

heme biosynthesis
16
biosynthetic pathway
12
heme
11
filamentous fungi
8
heme biosynthetic
8
regulation heme
8
regulation
6
pathway
5
biosynthesis regulation
4
regulation understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!