MicroRNAs (miRNAs) are small non-coding RNAs whose aberrations are involved in the initiation and progression of human cancers. To seek unique miRNAs contributing to melanoma tumorigenesis, we investigated the global miRNA expression profile of 7 melanoma cell lines and 3 primary cultures of neonatal human epidermal melanocytes (NHEMs) using the stem-loop real-time PCR method. We found 7 miRNAs that were commonly downregulated and 18 that were upregulated in all of the melanoma cell lines in comparison with the 3 primary cultures of NHEMs. We focused on one commonly downregulated miRNA (miR-211), and analyzed its relationship to the expression of preferentially expressed antigen of melanoma (PRAME) protein, which is a potential target of miR-211. We found that all melanoma cell lines exhibited marked down--regulation of miR-211 and upregulation of PRAME mRNA/protein expression in comparison with NHEMs (P<0.05). A significant inverse correlation between miR-211 and PRAME protein expression was found in melanoma cell lines and primary cultures of NHEMs (correlation coefficient of -0.733, P<0.05). We demonstrated that overexpression of miR-211 induced a reduction of PRAME protein levels, and confirmed the target specificity between miR-211 and PRAME by luciferase reporter assay. These results suggest that downregulation of miR-211 may be partly involved in aberrant expression of the PRAME protein in melanoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2011.1084DOI Listing

Publication Analysis

Top Keywords

melanoma cell
12
cell lines
12
expression preferentially
8
preferentially expressed
8
expressed antigen
8
antigen melanoma
8
primary cultures
8
commonly downregulated
8
melanoma
7
downregulation microrna-211
4

Similar Publications

Linking tumor immune infiltration to enhanced longevity in recurrence-free breast cancer.

ESMO Open

January 2025

Translational Genomics and Targeted Therapies in Solid Tumors group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Institute of Cancer and Blood Diseases, Hospital Clinic of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain. Electronic address:

Background: The infiltration of tumor-infiltrating B cells and plasma cells in early-stage breast cancer has been associated with a reduced risk of distant metastasis. However, the influence of B-cell tumor infiltration on overall patient survival remains unclear.

Materials And Methods: This study explored the relationship between an antitumor immune response, measured by a 14-gene B-cell/immunoglobulin (IGG) signature, and mortality risk in 9638 breast cancer patients across three datasets.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.

View Article and Find Full Text PDF

Thousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs.

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!