Background: Electrical Impedance measurements can be used to estimate the content of intra-thoracic air and thereby give information on pulmonary ventilation. Conventional Impedance measurements mainly indicate relative changes, but no information concerning air-volume is given. The study was performed to test whether a 3-point-calibration with known tidal volumes (VT) during conventional mechanical ventilation (CMV) allows subsequent calculation of VT from total Tidal-Impedance (tTI) measurements using Quadrant Impedance Measurement (QIM). In addition the distribution of TI in different regions of the thorax was examined.

Methodology And Principal Findings: QIM was performed in five neonatal piglets during volume-controlled CMV. tTI values at three different VT (4, 6, 8 ml/kg) were used to establish individual calibration curves. Subsequently, each animal was ventilated with different patterns of varying VT (2-10 ml/kg) at different PEEP levels (0, 3, 6, 9, 12 cmH(2)O). VT variation was repeated after surfactant depletion by bronchoalveolar lavage. VT was calculated from tTI values (VT(calc)) and compared to the VT delivered by the ventilator (VT(PNT)). Bland-Altman analysis revealed good agreement between VT(calc) and VT(PNT) before (bias -0.08 ml; limits of agreement -1.18 to 1.02 ml at PEEP = 3 cmH(2)O) and after surfactant depletion (bias -0.17 ml; limits of agreement -1.57 to 1.22 ml at PEEP = 3 cmH(2)O). At higher PEEP levels VT(calc) was lower than VT(PNT), when only one fixed calibration curve (at PEEP 3 cmH(2)O) was used. With a new calibration curve at each PEEP level the method showed similar accuracy at each PEEP level. TI showed a homogeneous distribution over the four assessed quadrants with a shift toward caudal regions of the thorax with increasing VT.

Conclusion: Tidal Impedance values could be used for precise and accurate calculation of VT during CMV in this animal study, when calibrated at each PEEP level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110249PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021003PLOS

Publication Analysis

Top Keywords

peep level
12
tidal volumes
8
tidal impedance
8
neonatal piglets
8
impedance measurements
8
regions thorax
8
tti values
8
peep levels
8
surfactant depletion
8
limits agreement
8

Similar Publications

Introduction: Cerebral ischemia leads to multiple organ dysfunctions, with the lungs among the most severely affected. Although adverse pulmonary consequences contribute significantly to reduced life expectancy after stroke, the impact of global or focal cerebral ischemia on respiratory mechanical parameters remains poorly understood.

Methods: Rats were randomly assigned to undergo surgery to induce permanent global cerebral ischemia (2VO) or focal cerebral ischemia (MCAO), or to receive a sham operation (SHAM).

View Article and Find Full Text PDF

Aim: Intraoperative lung-protective ventilation strategies (LPVS) have been shown to improve lung oxygenation and prevent postoperative pulmonary problems in surgical patients. However, the application of positive end-expiratory pressure (PEEP)-based LPVS in emergency traumatic brain injury (TBI) has not been thoroughly explored. The purpose of this study is to evaluate the effects of drive pressure-guided individualized PEEP on perioperative pulmonary oxygenation, postoperative pulmonary complications, and recovery from neurological injury in patients with TBI.

View Article and Find Full Text PDF

Background: To evaluate the influence of sodium bicarbonate Ringer's solution (BRS) combined with positive end-expiratory pressure (PEEP) on the internal environment in patients who have undergone laparoscopic bariatric surgery.

Methods: A total of 128 patients undergoing laparoscopic bariatric surgery were randomly divided into the control group (group C), the PEEP group (group P), the BRS group (group B), and the BRS combined with the PEEP group (group BP). The results of arterial blood gas analysis, including pH value, base excess (BE), concentrations of electrolyte, and lactate (Lac) were documented before intravenous infusion (T0) and 5 min after the surgery (T1).

View Article and Find Full Text PDF

Pressure support ventilation improves ventilation during inhalational induction of anesthesia in children: A pilot study.

J Clin Anesth

December 2024

Hospices Civils de Lyon, Département d'anesthésie, Hôpital Femme Mère Enfant, F - 69500 Bron, France; Agressions Pulmonaires et Circulatoires dans le Sepsis (APCSe), VetAgro Sup, Universités de Lyon, F-69280 Marcy l'Etoile, France. Electronic address:

Study Objective: To evaluate the impact of positive end-expiratory pressure (PEEP) with or without pressure support ventilation (PSV) on the lung volume and the ventilation distribution during inhalational induction of anesthesia in children.

Design: Prospective observational clinical pilot-study.

Setting: University Children's Hospital of Lyon, France.

View Article and Find Full Text PDF

Safety of flow-controlled ventilation with positive and negative end-expiratory pressure in a swine model of intracranial hypertension.

Intensive Care Med Exp

December 2024

Division of Intensive Care, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, Geneva, Switzerland.

Background: Patients with brain damage often require mechanical ventilation. Although lung-protective ventilation is recommended, the application of increased positive end-expiratory pressure (PEEP) has been associated with elevated intracranial pressure (ICP) due to altered cerebral venous return. This study investigates the effects of flow-controlled ventilation (FCV) using negative end-expiratory pressures (NEEP), on cerebral hemodynamics in a swine model of intracranial hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!