We introduce a widefield CARS microscope implementation that uses a spatial light modulator to obtain extremely precise control over the pump/probe-beam incidence geometry, which provides the possibility to enhance the image contrast at specific target resonances by fine-tuning the incidence angles. We show how this technique can be used to optimize the image contrast between objects of different size and to practically eliminate the undesired signal from the solvent that embeds small target specimens. Changing the numerical aperture of the illumination from 1.27 to 1.24 improved the ratio of the signals of 500 nm polystyrene beads and the agarose solvent by about 20 dB.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.002245DOI Listing

Publication Analysis

Top Keywords

widefield cars
8
spatial light
8
light modulator
8
image contrast
8
contrast enhancement
4
enhancement widefield
4
cars microscopy
4
microscopy tailored
4
tailored phase
4
phase matching
4

Similar Publications

Fourier Ptychographic Coherent Anti-Stokes Raman Scattering Microscopy with Point-Scanning for Super-Resolution Imaging.

Small Methods

October 2024

Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.

Fourier ptychography (FP) is a high resolution wide-field imaging method based on the extended aperture in the Fourier space, which is synthesized from raw images with varying illumination angles. If FP is extended to coherent nonlinear optical imaging, the resolution could be further improved due to the increase of the cutoff frequency of the synthesized coherent optical transfer function (C-OTF) with respect to the order of nonlinear optical processes. However, there is a fundamental conflict between wide-field FP and nonlinear optical imaging, whereby the nonlinear optical imaging typically requires a focused excitation laser beam with high power density.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates new nanojunctions made from gold and silicon particles for enhanced surface measurements in coherent anti-Stokes Raman spectroscopy (CARS).
  • By successfully reducing background noise, they achieved detectable molecular signals using lower power densities than previously reported.
  • This approach shows promise for improved sensing technologies by avoiding issues seen in traditional all-metal systems.
View Article and Find Full Text PDF

Purpose: Conventional oral antifungal therapies for onychomycosis (OM) often do not achieve complete cure and may be associated with adverse effects, medical interactions, and compliance issues restricting their use in a large group of patients. Topical treatment can bypass the systemic side effects but is limited by the physical barrier of the nail plate. Ablative fractional laser (AFL) treatment can be used to improve the penetration of topical drugs into the nail.

View Article and Find Full Text PDF

Optical Microscopy and the Extracellular Matrix Structure: A Review.

Cells

July 2021

Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity.

View Article and Find Full Text PDF

Nonlinear optical microscopy that leverages an objective based total internal reflection (TIR) excitation scheme is an attractive means for rapid, wide-field imaging with enhanced surface sensitivity. Through select combinations of distinct modalities, one can, in principle, access complementary chemical and structural information for various chemical species near interfaces. Here, we report a successful implementation of such a wide-field nonlinear optical microscope system, which combines coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), second harmonic generation (SHG), and sum frequency generation (SFG) modalities on the same platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!