Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: This study aimed to determine the effect of postexercise protein-leucine coingestion with CHO-lipid on subsequent high-intensity endurance performance and to investigate candidate mechanisms using stable isotope methods and metabolomics.
Methods: In this double-blind, randomized, crossover study, 12 male cyclists ingested a leucine/protein/CHO/fat supplement (LEUPRO 7.5/20/89/22 g · h(-1), respectively) or isocaloric CHO/fat control (119/22 g · h(-1)) 1-3 h after exercise during a 6-d training block (intense intervals, recovery, repeated-sprint performance rides). Daily protein intake was clamped at 1.9 g · kg(-1) · d(-1) (LEUPRO) and 1.5 g · kg(-1) · d(-1) (control). Stable isotope infusions (1-(13)C-leucine and 6,6-(2)H2-glucose), mass spectrometry-based metabolomics, and nitrogen balance methods were used to determine the effects of LEUPRO on whole-body branched-chain amino acid (BCAA) and glucose metabolism and protein turnover.
Results: After exercise, LEUPRO increased BCAA levels in plasma (2.6-fold; 90% confidence limits = ×/÷ 1.1) and urine (2.8-fold; ×/÷ 1.2) and increased products of BCAA metabolism plasma acylcarnitine C5 (3.0-fold; ×/÷ 0.9) and urinary leucine (3.6-fold; ×/÷ 1.3) and β-aminoisobutyrate (3.4-fold; ×/÷ 1.4), indicating that ingesting ~10 g leucine per hour during recovery exceeds the capacity to metabolize BCAA. Furthermore, LEUPRO increased leucine oxidation (5.6-fold; ×/÷ 1.1) and nonoxidative disposal (4.8-fold; ×/÷ 1.1) and left leucine balance positive relative to control. With the exception of day 1 (LEUPRO = 17 ± 20 mg N · kg(-1), control = -90 ± 44 mg N · kg(-1)), subsequent (days 2-5) nitrogen balance was positive for both conditions (LEUPRO = 130 ± 110 mg N · kg(-1), control = 111 ± 86 mg N · kg(-1)). Compared with control feeding, LEUPRO lowered the serum creatine kinase concentration by 21%-25% (90% confidence limits = ± 14%), but the effect on sprint power was trivial (day 4 = 0.4% ± 1.0%, day 6 = -0.3% ± 1.0%).
Conclusions: Postexercise protein-leucine supplementation saturates BCAA metabolism and attenuates tissue damage, but effects on subsequent intense endurance performance may be inconsequential under conditions of positive daily nitrogen balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0b013e3182290371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!