A statistically robust method was applied to 83 time-series of mercury in Arctic biota from marine, freshwater and terrestrial ecosystems with the purpose of generating a 'meta-analysis' of temporal trend data collected over the past two to three decades, mostly under the auspices of the Arctic Monitoring and Assessment Program (AMAP). Sampling locations ranged from Alaska in the west to northern Scandinavia in the east. Information from recently published temporal trend studies was tabulated to supplement the results of the statistical analyses. No generally consistent trend was evident across tissues and species from the circumpolar Arctic during the last 30years or so. However, there was a clear west-to-east gradient in the occurrence of recent increasing Hg trends, with larger numbers and a higher proportion of biotic datasets in the Canadian and Greenland region of the Arctic showing significant increases than in the North Atlantic Arctic. Most of the increasing datasets were for marine species, especially marine mammals. A total of 16 (19%) out of the 83 time-series could be classified as "adequate", where adequate is defined as the number of actual monitoring years in a time-series being equal to or greater than the number of years of sampling required to detect a 5% annual change in Hg concentrations, with a significance level of P<0.05 and 80% statistical power. At the time of the previous AMAP Assessment, only 10% of the Hg time-series were deemed adequate. If an additional 5years of data were to be added to the current set of time-series, it is predicted that 53% of time-series would become adequate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2011.05.002 | DOI Listing |
PLoS One
December 2024
SILA Department, Institute of Health and Nature, Ilisimatusarfik-University of Greenland, Nuuk, Greenland.
The consumption of prey intestines and their content, known as gastrophagy, is well-documented among Arctic Indigenous peoples, particularly Inuit. In Greenland, Inuit consume intestines from various animals, including the ptarmigan, a small herbivorous grouse bird. While gastrophagy provides the potential to transfer a large number of intestinal microorganisms from prey to predator, including to the human gut, its microbial implications remain to be investigated.
View Article and Find Full Text PDFSci Total Environ
December 2024
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
Microplastic (MP) pollution has reached the remotest areas of the globe, including the polar regions. In the Arctic Ocean, MPs have been detected in ice, snow, water, sediment, and biota, but their temporal dynamics remain poorly understood. To better understand the transport pathways and drivers of MP pollution in this fragile environment, this study aims to assess MPs (≥ 11 μm) in sediment trap samples collected at the HAUSGARTEN observatory (Fram Strait) from September 2019 to July 2021.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic.
View Article and Find Full Text PDFSci Total Environ
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Centre d´études nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada. Electronic address:
Permafrost predominates in polar and high mountain regions, encompassing nearly 15 % of the exposed land in the Northern Hemisphere. It denotes soil or rock that remains at or below 0 °C for the duration of at least two consecutive years. These frozen soils serve as a barrier to contaminants that are stored and accumulated in permafrost over extended periods of time.
View Article and Find Full Text PDFMicrobiome
December 2024
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Background: Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change.
Results: Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!