Brain areas expressing c-fos messenger RNA were mapped by quantitative in situ hybridization after 1-2 h of intoxication with 10 μg/kg Tx2-6, a toxin obtained from the venom of the spider Phoneutria nigriventer. Relative to saline-treated controls, brains from toxin-treated animals showed pronounced c-fos activation in many brain areas, including the supraoptic nucleus, the paraventricular nucleus of the hypothalamus, the motor nucleus of the vagus, area postrema, paraventricular and paratenial nuclei of the thalamus, locus coeruleus, central amydaloid nucleus and the bed nucleus of the stria terminalis. The paraventricular hypothalamus and the bed nucleus of the stria terminalis have been implicated in erectile function in other studies. A possible role for central NO is considered. Acute stress also activates many brain areas activated by Tx2-6 as well as with NOstimulated Fos transcription. Brain areas that appear to be selectively activated by Tx2-6, include the paratenial and paraventricular thalamic nuclei, the bed nucleus of the stria terminalis and the area postrema and the dorsal motor n. of vagus in the medulla. However, direct injections of different doses of the toxin into the paraventricular hypothalamic n. failed to induce penile erection, arguing against CNS involvement in this particular effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2011.05.019DOI Listing

Publication Analysis

Top Keywords

brain areas
16
bed nucleus
12
nucleus stria
12
stria terminalis
12
c-fos activation
8
penile erection
8
area postrema
8
activated tx2-6
8
nucleus
7
paraventricular
5

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Characterizing olfactory brain responses in young infants.

J Neurosci

January 2025

Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Odor perception plays a critical role in early human development, but the underlying neural mechanisms are not fully understood. To investigate these, we presented appetitive and aversive odors to infants of both sexes at one month of age while recording functional magnetic resonance imaging (fMRI) and nasal airflow data. Infants slept during odor presentation to allow MRI scanning.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.

View Article and Find Full Text PDF

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!