Hermitamides A and B are lipopeptides isolated from a Papau New Guinea collection of the marine cyanobacterium Lyngbya majuscula. We hypothesized that the hermitamides are ligands for the human voltage-gated sodium channel (hNa(V)) based on their structural similarity to the jamaicamides. Herein, we describe the nonracemic total synthesis of hermitamides A and B and their epimers. We report the ability of the hermitamides to displace [(3)H]-BTX at 10 μM more potently than phenytoin, a clinically used sodium channel blocker. We also present a potential binding mode for (S)-hermitamide B in the BTX-binding site and electrophysiology showing that these compounds are potent blockers of the hNav1.2 voltage-gated sodium channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134794 | PMC |
http://dx.doi.org/10.1016/j.bmc.2011.05.043 | DOI Listing |
Theranostics
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau.
Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.
Heat sensation is mediated by specialized heat-sensitive neurons in the somatosensory system that innervates the skin. Previous studies revealed that noxious heat sensation is controlled by the sodium (Na)-activated potassium (K) channel Slick (Kcnt2), which is highly expressed in nociceptive Aδ-fibers. However, the mechanism by which Slick modulates heat sensation is poorly understood.
View Article and Find Full Text PDFTrends Cell Biol
December 2024
Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA. Electronic address:
Voltage-gated sodium channels (VGSCs) are best known for their role in the generation and propagation of action potentials in neurons, muscle cells, and cardiac myocytes, which have traditionally been labeled as 'excitable'. However, emerging evidence challenges this traditional perspective. It is now clear that VGSCs are also expressed in a broad spectrum of cells outside the neuromuscular realm, where they regulate diverse cellular functions.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!