Cerebellar ataxias, which comprise a wide spectrum of progressive disorders, are incurable at present. It has been reported that human umbilical mesenchymal stem cell (HU-MSC) transplantation has a protective effect on neurodegenerative diseases. In this study, we investigated the effect of HU-MSCs on ataxic mice induced by cytosine beta-D-arabinofuranoside (Ara-C). The ataxic mouse received an intravenous injection of 2×10(6) HU-MSCs once a week for three consecutive weeks. Neurological function was scored weekly by rotarod test and open field test. The mouse cerebellar volume and weight were also measured. The apoptotic cells, pathological alternations and distribution of HU-MSCs were determined by TUNEL assay and immunohistochemistry staining respectively. Double immunostaining was carried out to investigate the dynamics of HU-MSCs in the host animals. Neurotrophic factors in cerebellar tissue and serum were measured by Q-PCR and ELISA. Our results showed that HU-MSCs implantation significantly improved the motor skills of ataxic mice 8 weeks after application. HU-MSCs also alleviated cerebellar atrophy and decreased the number of apoptotic cells in the therapeutic group. Implanted HU-MSCs stayed in cerebellum for at least three months with no obvious differentiation. HU-MSC treated mice had enhanced expression of insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) in cerebellum extraction and blood serum. Double immunostaining revealed that a few MAB1287 positive cells co-localized with IGF-1 or VEGF express cells. Our results suggest that HU-MSC treatment is capable of alleviating the motor impairments and cerebellar atrophy in the ataxic mouse model, probably via promoting particular neurotrophic factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2011.05.055DOI Listing

Publication Analysis

Top Keywords

neurotrophic factors
12
ataxic mice
12
human umbilical
8
umbilical mesenchymal
8
mesenchymal stem
8
ataxic mouse
8
apoptotic cells
8
double immunostaining
8
cerebellar atrophy
8
hu-mscs
7

Similar Publications

Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Background: This systematic review and meta-analysis evaluates peripheral and CNS BDNF levels in glioma patients.

Methods: Following PRISMA guidelines, we systematically searched databases for studies measuring BDNF in glioma patients and controls. After screening and data extraction, we conducted quality assessment, meta-analysis, and meta-regression.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) has a high mortality rate worldwide; thus, identifying death risk factors related to ARDS is critical for risk stratification in patients with ARDS. In the present study, we conducted a single-center retrospective cohort analysis. Out of 278 patients with ARDS admitted from January 2016 to June 2022, 226 were included in this study.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!