Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.

J Acoust Soc Am

Clinical Psychoacoustics Laboratory, Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA.

Published: June 2011

Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in 15 cochlear-implant subjects, 10 using monopolar stimulation and 5 using bipolar stimulation. In each subject, fmSTCs were measured at several probe levels on an apical, middle, and basal electrode using a fixed-level probe stimulus and variable-level maskers. Tuning curve slopes and bandwidths did not change significantly with probe level for electrodes located in the apical, middle, or basal region although a few subjects exhibited dramatic changes in tuning at the extremes of the probe level range. Average tuning curve slopes and bandwidths did not vary significantly across electrode regions. Spatial tuning curves were symmetrical and similar in width across the three electrode regions. However, several subjects demonstrated large changes in slope and/or bandwidth across the three electrode regions, indicating poorer tuning in localized regions of the array. Cochlear-implant users exhibited bandwidths that were approximately five times wider than normal-hearing acoustic listeners but were in the same range as acoustic listeners with moderate cochlear hearing loss. No significant correlations were found between spatial tuning parameters and speech recognition; although a weak relation was seen between middle electrode tuning and transmitted information for vowel second formant frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135148PMC
http://dx.doi.org/10.1121/1.3583503DOI Listing

Publication Analysis

Top Keywords

spatial tuning
16
tuning curves
12
apical middle
12
middle basal
12
electrode regions
12
tuning
8
fmstcs measured
8
tuning curve
8
curve slopes
8
slopes bandwidths
8

Similar Publications

Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) can provide high-throughput imaging by computationally combining low-resolution images at different spatial frequencies within the Fourier domain. The core algorithm for FPM reconstruction draws upon phase retrieval techniques, including methods such as the ptychographic iterative engine (PIE), regularized PIE (rPIE), and embedded pupil function FPM (EPRY-FPM). The calibration of the physical setup plays a crucial role in the quality of the reconstructed high space-bandwidth product (SPB) image.

View Article and Find Full Text PDF

This study aimed to assess the environmental variables affecting the Body Mass Index of older adults at neighborhood levels (1 ha) while mapping probability distributions of normal, overweight-obese, and underweight older adults. We applied a data-driven method that integrates open-access remote sensing products and geospatial data, along with the first nutritional survey in the Philippines with geo-locations conducted in 2021. We used ensemble machine learning of different presence-only and presence-absence models, all subjected to hyperparameter tuning and variable decorrelation.

View Article and Find Full Text PDF

Implantable physiological electrodes provide unprecedented opportunities for real-time and uninterrupted monitoring of biological signals. Most implantable electronics adopt thin-film substrates with low permeability that severely hampers tissue metabolism, impeding their long-term biocompatibility. Recent innovations have seen the advent of permeable electronics through the strategic modification of liquid metals (LMs) onto porous substrates.

View Article and Find Full Text PDF

When we touch ourselves, the pressure appears weaker compared to when someone else touches us, an effect known as sensory attenuation. Sensory attenuation is spatially tuned and does only occur if the positions of the touching and the touched body-party spatially coincide. Here, we ask about the contribution of visual or proprioceptive signals to determine self-touch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!