This letter demonstrates that an eigenstrain is induced when a wave propagates through an elastic solid with quadratic nonlinearity. It is shown that this eigenstrain is intrinsic to the material, but the mean stress and the total mean strain are not. Instead, the mean stress and total means strain also depend on the boundary conditions, so care must be taken when using the static deformation to measure the acoustic nonlinearity parameter of a solid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3583501 | DOI Listing |
Support Care Cancer
January 2025
Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia.
Background/aims: Social connectedness is increasingly recognised as influencing health outcomes in cancer caregivers; however, there is little understanding of factors which foster feelings of social connectedness among caregivers when providing care. We sought to examine from the caregivers' perspective, factors which contribute to perceived social connection when providing care to someone with cancer.
Methods: Semi-structured interviews were conducted with 20 caregivers of people with cancer.
Sci Rep
January 2025
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.
Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.
View Article and Find Full Text PDFSci Rep
January 2025
The Fourth Engineering Co., LTD, China Railway Fourth Bureau, Hefei, 230012, People's Republic of China.
Research investigating the complex mechanical properties and energy evolution mechanisms of frozen calcareous clay under the influence of multiple factors is crucial for optimizing the artificial ground freezing method in shaft sinking, thereby enhancing construction quality and safety. In this study, a four-factor, four-level orthogonal test was devised, taking into account temperature, confining pressure, dry density, and water content. The complex nonlinear curvilinear relationship between deviatoric stress, volume strain, and axial strain of frozen calcareous clay under different interaction levels was analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
Long-term erosion by acidic solutions in karst regions leads to continuous deterioration of the physical and mechanical properties at the interfaces of engineering structures, adversely affecting their operational performance. To investigate the degradation patterns of the mechanical properties and corrosion mechanisms of the concrete‒limestone composite (CLC) after exposure to acidic corrosion, three kinds of CLC samples treated with acidic solutions of different pH values were fabricated. Mechanical property analysis was conducted via triaxial compression testing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!