Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives.

J Biomed Mater Res A

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.

Published: September 2011

Tissue sealants have emerged in recent years as strong candidates for hemostasis. A variety of formulations are currently commercially available and though they satisfy many of the markets' needs there are still key aspects of each that need improvement. Here we present a new class of blends, based on silk fibroin and chemically active polyethylene glycols (PEGs) with strong adhesive properties. These materials are cytocompatible, crosslink within seconds via chemical reaction between thiols and maleimides present on the constituent PEGs and have the potential to further stabilize through β-sheet formation by silk. Based on the silk concentration in the final formulation, the adhesive properties of these materials are comparable or better than the current leading PEG-based sealant. In addition, the silk-PEG based materials show decreased swelling and longer degradation times. Such properties would make them suitable for applications for which the current sealants are contraindicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404824PMC
http://dx.doi.org/10.1002/jbm.a.33149DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
based silk
8
adhesive properties
8
properties materials
8
silk
4
fibroin polyethylene
4
polyethylene glycol-based
4
glycol-based biocompatible
4
biocompatible tissue
4
tissue adhesives
4

Similar Publications

Bioinspired Design of an Underwater Adhesive Based on Tea Polyphenol-Modified Silk Fibroin.

ACS Biomater Sci Eng

December 2024

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

Adhesives have garnered significant interest recently due to their application in the field of biomedical applications. Nonetheless, developing adhesives that exhibit robust underwater adhesion and possess antimicrobial properties continues to pose a significant challenge. In this study, motivated by the adhesive mechanism observed in mussels in aquatic environments, dopamine (DA) was added to modify the silk fibroin (SF) solution.

View Article and Find Full Text PDF

This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.

View Article and Find Full Text PDF

The Unfulfilled Potential of Synthetic and Biological Hydrogel Membranes in the Treatment of Abdominal Hernias.

Gels

November 2024

Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary.

Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair.

View Article and Find Full Text PDF

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Complete BmFib-L knockout reveals its indispensable role in silk fiber formation.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:

Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!