Juvenile mice of the DBA/2J strain undergo generalised seizures when exposed to a high-intensity auditory stimulus. Genetic analysis identified three different loci underlying this audiogenic seizure proneness (ASP)-Asp1, Asp2 and Asp3 on chromosomes 12, 4 and 7, respectively. Asp1 is thought to have the strongest influence, and mice with only Asp1 derived from the DBA/2J strain are reported to exhibit ASP. The aim of this study was to characterise more accurately the contributions of the Asp1 and Asp3 loci in ASP using congenic strains. Each congenic strain contains a DBA/2J-derived interval encompassing either Asp1 or Asp3 on a C57BL/6J genetic background. A double congenic C57BL/6J strain containing both Asp loci derived from DBA/2J was also generated. Here, we report that DBA/2J alleles at both of these Asp loci are required to confer ASP because congenic C57BL/6 mice harbouring DBA/2J alleles at only Asp1 or Asp3 do not exhibit ASP, whereas DBA/2J alleles at both loci resulted in increased susceptibility for audiogenic seizure in double congenic C57BL/6 mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10048-011-0289-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!