The factors involved in the pathogenesis of Crohn's disease and ulcerative colitis, the two major types of inflammatory bowel disease (IBD) are summarized. Intestinal antigens composed of bacterial flora along with antigen presentation and impaired mucosal barrier have an important role in the initiation of IBD. The bacterial community may be modified by the use of antibiotics and probiotics. The dentritic cells recognize the antigens by cell surface Toll like receptor and the cytoplasmic CARD/NOD system. The balance between Th1/Th2/Th17 cell populations being the source of a variety of cytokines regulates the inflammatory mechanisms and the clearance of microbes. The intracellular killing and digestion, including autophagy, are important in the protection against microbes and their toxins. The homing process determines the location and distribution of the immune cells along the gut. All these players are potential targets of pharmacological manipulation of disease status.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12253-011-9397-4DOI Listing

Publication Analysis

Top Keywords

inflammatory bowel
8
bowel disease
8
cellular molecular
4
molecular mechanisms
4
mechanisms major
4
major forms
4
forms inflammatory
4
disease
4
disease factors
4
factors involved
4

Similar Publications

Vedolizumab (VDZ) is approved in the treatment of patients with moderate to severe ulcerative colitis (UC) or Crohn's disease (CD). VDZ exhibits considerable variability in its pharmacokinetic (PK) profile, and its exposure-response relationship is not yet fully understood. The aim was to investigate the variability in VDZ trough levels and PK parameters, to assess the relationship between VDZ PK and biochemical response, as well as clinical and endoscopic outcomes.

View Article and Find Full Text PDF

Background: This study evaluated the long-term effectiveness and safety of a multidisciplinary early proactive therapeutic drug monitoring (TDM) program combined with Bayesian forecasting for infliximab (IFX) dose adjustment in a real-world dataset of paediatric patients with inflammatory bowel disease (IBD).

Methods: A descriptive, ambispective, single-centre study of paediatric patients with IBD who underwent IFX serum concentration measurements between September 2015 and September 2023. The patients received reactive TDM before September 2019 (n = 17) and proactive TDM thereafter (n = 21).

View Article and Find Full Text PDF

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights.

View Article and Find Full Text PDF

Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases.

Nutrients

December 2024

Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.

Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!