Association mapping (AM) is a powerful approach to dissect the genetic architecture of quantitative traits. The main goal of our study was to empirically compare several statistical methods of AM using data of an elite maize breeding program with respect to QTL detection power and possibility to correct for population stratification. These models were based on the inclusion of cofactors (Model A), cofactors and population effect (Model B), and SNP effects nested within populations (Model C). A total of 930 testcross progenies of an elite maize breeding population were field-evaluated for grain yield and grain moisture in multi-location trials and fingerprinted with 425 SNP markers. For grain yield, population stratification was effectively controlled by Model A. For grain moisture with a high ratio of variance among versus within populations, Model B should be applied in order to avoid potential false positives. Model C revealed large differences among allele substitution effects for trait-associated SNPs across multiple plant breeding populations. This heterogeneous SNP allele substitution effects have a severe impact for genomic selection studies, where SNP effects are often assumed to be independent of the genetic background.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-011-1631-7 | DOI Listing |
Plants (Basel)
January 2025
Department of Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania.
To ensure food and feed security, modern maize hybrids must not only perform well under changing climate conditions but also consistently achieve higher and stable yields, exhibit maximum tolerance to stress factors, and produce high quality grains. In a study conducted in 2022 and 2023, 50 maize hybrids were developed from crosses of five elite (highly productive) inbred lines and ten lines possessing favorable genes for carotenoid content. These hybrids were tested under particularly unfavorable conditions for maize cultivation.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
Front Plant Sci
December 2024
Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States.
Tef [ (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
UCSC Paleogenomics, Department of Anthropology, University of California, Santa Cruz, CA 95064.
The Moche archaeological culture flourished along Peru's North Coast between the 4th and 10th centuries CE and was characterized by a complex social hierarchy dominated by political and religious elites. Previous archaeological evidence suggests kinship was a key factor in maintaining political authority within Moche society. To test this hypothesis, we applied archaeological, genetic, and isotopic methods to examine familial relationships between six individuals, including the prominent Señora de Cao (), buried together in a pyramid-like, painted temple, Huaca Cao Viejo, in the Chicama Valley, Peru.
View Article and Find Full Text PDFPlant Physiol
December 2024
Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!