AMPK is a direct adenylate charge-regulated protein kinase.

Science

Department of Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia.

Published: June 2011

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an αβγ heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the α catalytic subunit on threonine-172 (Thr(172)) by kinases LKB1 or CaMKKβ, and this is promoted by AMP binding to the γ subunit. AMP sustains activity by inhibiting dephosphorylation of α-Thr(172), whereas ATP promotes dephosphorylation. Adenosine diphosphate (ADP), like AMP, bound to γ sites 1 and 3 and stimulated α-Thr(172) phosphorylation. However, in contrast to AMP, ADP did not directly activate phosphorylated AMPK. In this way, both ADP/ATP and AMP/ATP ratios contribute to AMPK regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1200094DOI Listing

Publication Analysis

Top Keywords

protein kinase
8
ampk
6
amp
5
ampk direct
4
direct adenylate
4
adenylate charge-regulated
4
charge-regulated protein
4
kinase adenosine
4
adenosine monophosphate
4
monophosphate amp-activated
4

Similar Publications

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Distinct TYRO3 and PROS1 expression levels contribute to preeclampsia pathogenesis.

Histochem Cell Biol

January 2025

Departments of Obstetrics and Gynecology, School of Medicine, Akdeniz University, Antalya, Turkey.

Preeclampsia (PE) is a severe placental complication occurring after the 20th week of pregnancy. PE is associated with inflammation and an increased immune reaction against the fetus. TYRO3 and PROS1 suppress inflammation by clearing apoptotic cells.

View Article and Find Full Text PDF

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!