We investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies. The twofold pairing symmetry was further supported by the observation of striped electronic nanostructures in the slightly Se-doped samples. The anisotropy can be explained in terms of the orbital-dependent reconstruction of electronic structure in FeSe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1202226 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
October 2024
Laboratory of Materials Chemistry (LR13ES08), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
In the title salt, CHN ·HPO , the complete dication is generated by a crystallographic centre of symmetry with the methyl groups in equatorial orientations. The complete dianion is generated by a crystallographic twofold axis with the central O atom lying on the axis: the P-O-P bond angle is 135.50 (12)°.
View Article and Find Full Text PDFPLoS Pathog
December 2024
State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
The Very Low-Density Lipoprotein Receptor (VLDLR) is an entry receptor for the prototypic alphavirus Semliki Forest Virus (SFV). However, the precise mechanisms underlying the entry of SFV into cells mediated by VLDLR remain unclear. In this study, we found that of the eight class A (LA) repeats of the VLDLR, only LA2, LA3, and LA5 specifically bind to the native SFV virion while synergistically promoting SFV cell attachment and entry.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Phys Rev Lett
November 2024
LPTHE, UMR 7589, CNRS and Sorbonne Université, 75252 Paris Cedex 05, France.
Spontaneous symmetry breaking and more recently entanglement are two cornerstones of quantum matter. We introduce the notion of anisotropic entanglement ordered phases, where the spatial profile of spin-pseudospin entanglement spontaneously lowers the fourfold rotational symmetry of the underlying crystal to a twofold one, while the charge density retains the full symmetry. The resulting phases, which we term entanglement smectic and entanglement stripe, exhibit a rich Goldstone mode spectrum and a set of phase transitions as a function of underlying anisotropies.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
We introduce a universal methodology for generating and manipulating altermagnetism in two-dimensional (2D) magnetic Van der Waals (MvdW) materials through twisting. We find that a key in-plane twofold rotational operation can be achieved in a twisted bilayer of any 2D MvdW material, which takes one of all five 2D Bravais lattices, thereby inducing altermagnetism. By choosing the constituent MvdW monolayer with specific symmetry, our approach can tailor altermagnetism of any type, such as d wave, g wave, and i wave.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!