Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2011.05.021 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria.
Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.
Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.
Sci Rep
January 2025
Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.
View Article and Find Full Text PDFCommun Biol
January 2025
School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.
View Article and Find Full Text PDFSci Rep
January 2025
Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China.
Early detection of cognitive dysfunction in patients with type 2 diabetes mellitus (T2DM) is important for preventive measures due to the lack of effective treatments. The purpose of this study is to investigate the relationship between enlarged perivascular space in the hippocampus (H-EPVS) and cognitive performance in patients with T2DM, and to determine whether it can serve as an imaging marker for cognitive dysfunction. 66 T2DM patients with cognitive impairment (T2DM-CI) and 71 T2DM patients with normal cognitive function (T2DM-NC) underwent cranial MRI scans and comprehensive neuropsychological assessments.
View Article and Find Full Text PDFRinsho Shinkeigaku
January 2025
Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine.
In an 81-year-old man, brain diffusion-weighted MRI revealed punctate high-intensity lesions in the bilateral frontal cortex. Three months later, these lesions had extended into the cerebral cortices. Six months after the original MRI, the patient developed cognitive decline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!