Zeolites are effective ROS-scavengers in vitro.

Biochem Biophys Res Commun

Laboratoire de Biochimie, Hôpital Timone, 27 Bd Jean Moulin, F-13385 Marseille Cedex 05, France.

Published: July 2011

We report on the use of zeolites to limit the effects of reactive oxygen species (ROS) on human albumin under in vitro conditions. Zeolites of different structure type, channel size, channel polarity, and charge-compensating cation were screened for the elimination of ROS, notably HO(·), resulting from the Fenton reaction. A test based on ischemia-modified albumin (IMA) was used as a marker to monitor the activity of HO(·) after co-exposure of human serum to these zeolites. Two commercial zeolites, faujasite (FAU 13×, channel opening 0.74×0.74 nm with Na(+) as charge-compensating cation) and ferrierite (FER, channel opening 0.54×0.42 nm with H(+) as charge-compensating cation), were found to reduce IMA formation by more than 65% due to removal of HO(·) relative to reference values. It was established that partial ion exchange of the zeolites' respective charge-compensating cation vs. Fe(3+) implicated in the Fenton reaction plays a major role in HO(·) deactivation process. Moreover, our results show that no saturation of the respective zeolite active sites occurred. This is possible only when ROS are actively converted to water molecules within the zeolite void system, which generates H(+) ion transport. Because zeolites cannot be administered in blood, their use in medicine should be limited to extra corporeal circuits. Zeolites could be of use during cardiopulmonary bypass or hemodialysis procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.06.002DOI Listing

Publication Analysis

Top Keywords

charge-compensating cation
16
fenton reaction
8
channel opening
8
zeolites
7
zeolites effective
4
effective ros-scavengers
4
ros-scavengers vitro
4
vitro report
4
report zeolites
4
zeolites limit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!