Increasing evidence indicates that the cAMP responsive element binding protein (CREB)-dependent transcriptional activation of a number of genes requires the CREB co-activator: transducer of regulated CREB activity (TORC). Because of the central importance of CREB in many brain functions, we examined the topographic distribution of TORC1, 2, and 3 mRNAs in specific regions of the rat forebrain. In situ hybridisation analysis revealed that TORC1 is the most abundant isoform in most forebrain structures, followed by TORC2 and TORC3. All three TORC isoforms were found in a number of brain nuclei, the ventricular ependyma and pia mater. Although high levels of TORC1 were widely distributed in the forebrain, TORC2 was found in discrete nuclei and TORC3 mostly in the ependyma, and pia mater. The relative expression of TORC isoforms was confirmed by quantitative reverse transcriptase-polymerase chain reaction analysis in the hippocampus and hypothalamus. In the paraventricular nucleus of the hypothalamus, TORC1 and 2 mRNAs were abundant in the parvicellular and magnocellular neuroendocrine compartments, whereas TORC3 expression was low. All three isoform mRNAs were found elsewhere in the hypothalamus, with the most prominent expression of TORC1 in the ventromedial nucleus, TORC2 in the dorsomedial and arcuate nuclei, TORCs 1 and 2 in the supraoptic nucleus, and TORC2 in the suprachiasmatic nucleus. These differential distribution patterns are consistent with complex roles for all three TORC isoforms in diverse brain structures, and provide a foundation for further studies on the mechanisms of CREB/TORC signalling on brain function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420016 | PMC |
http://dx.doi.org/10.1111/j.1365-2826.2011.02178.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!