Parameters for effective in vitro production of zinc finger nucleic acid-binding proteins.

Biotechnol Appl Biochem

Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.

Published: May 2011

Immobilized metal affinity chromatography (IMAC) is widely used for the production of recombinant proteins for a variety of applications; however, a number of challenges are typically encountered by researchers depending on the properties of the specific proteins in question. Here, we describe technical issues we have encountered in production of recombinant zinc finger nucleic acid-binding proteins by IMAC intended for detailed and accurate in vitro analysis. The process encountered leading to a modified IMAC protocol for effective production of high-purity, native zinc finger nucleic acid-binding proteins is described in detail. The parameters with respect to solubility, lysis and redox conditions, removal of residual metal ions with chelating agents, and renaturation in the presence of divalent metal cations are described. These procedures have been extended to production of a wide array of RNA-binding proteins in our laboratory and would be relevant to a number of protein purification applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.24DOI Listing

Publication Analysis

Top Keywords

zinc finger
12
finger nucleic
12
nucleic acid-binding
12
acid-binding proteins
12
production recombinant
8
proteins
6
production
5
parameters effective
4
effective vitro
4
vitro production
4

Similar Publications

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.

View Article and Find Full Text PDF

: GFI1-36N represents a single-nucleotide polymorphism (SNP) of the zinc finger protein Growth Factor Independence 1 (GFI1), in which the amino acid serine (S) is replaced by asparagine (N). The presence of the gene variant is associated with a reduced DNA repair capacity favoring myeloid leukemogenesis and leads to an inferior prognosis of acute myeloid leukemia (AML) patients. However, the underlying reasons for the reduced DNA repair capacity in leukemic cells are largely unknown.

View Article and Find Full Text PDF

Mitochondrial base editing: from principle, optimization to application.

Cell Biosci

January 2025

Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.

In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!